SUPER NINTENDD

ENTERTAINMENT SYSTEM

DEVELOPMENT
MANUAL

BOOK II

SNES DEVELOPMENT MANUAL

{

“Confidential”

This document contains confidential and
proprietary information of Nintendo and

is also protected under the copyright laws
of the United States and foreign countries.
No part of this document may be released,
distributed, transmitted or reproduced in
any form or by any electronic or
mechanical means, including information
storage and retrieval systems, without
permission in writing from Nintendo.

© 1993, 1994, 1995 Nintendo

The terms Sony and Sony NEWS are
registered trademarks of Sony Corporation.
® and ™ are registered trademarks of
Nintendo.

TABLE of CONTENTS

[]
Table of Contents
BOOK I1
SUBJECT PAGE

SECTION 1 - SUPER ACCELERATOR (SA-1).......coooovioveveern.n. 1-1-1
Super Accelerator System Functions............c.ccccovivivieieiciieiiieeeeeeeeee 1-1-1
Configuration 0f SA-T ..ot 1-2-1
Super Accelerator MEMOTy Mapccooveueuiiiuiiiectceeeecceee e 1-3-1
SA-1 Internal Register Configuration............c..c.ocoveveuiieiieiieeeieeeeeeeeeee e, 1-4-1
Multi-Processor PrOCESSINGccoiviiirirreiieiieieeetete e 1-5-1
Character CONVETSION.........c.ccueuiiiiiiiirieiiireet ettt 1-6-1
Arithmetic FUNCHONc.coiiiiiiieiiecce e, 1-7-1
Variable-Length Bit Processing..........c.ccccvvviiueuiuiiiieieeieeeeeeeeeeeeeee e, 1-8-1
DMA ettt ettt ettt 1-9-1
SA-TTIMET ..ottt ee e 1-10-1
SECTION 2 - SUPER FX® ...t 2-1-1
Introduction t0 SUPEr FXc.ociiiiiiiiieieieeee et 2-1-1
GSU Functional OPerationcccoeetvirivieieiiuiuieieceeeeeie e 2-2-1
MeMmOTY MapPiNgc.coueueirieiiinieieieeie ettt eeas 2-3-1
GSU Internal Register Configurationccocovoviiuiueieeieereeeeeeeeeeeeseeeeeenns 2-4-1
GSU Program EXECUtION.cieiiruiiiiieieieietcceeeeeeeeeeeeee e, 2-5-1
InStruction EXECULIONcovveiiiiieiiiiii et 2-6-1
DALA ACCESS.....o.oviiiiiiieet ettt ettt e erann 2-7-1
GSU Special FUNCHONSouvveeiieieiiiciceeeeeee et e e 2-8-1
Description of INStIUCHIONS.c.coueuiieteeiiciiceetee e e eeranns 2-9-1
SECTION 3 =-DSP/DSPI ... 3-1-1
Introduction t0 DSPTc.ocooiiiiiiiii e, 3-1-1
Command SUIMIMATYocoovuiiiiieriiereeeeeeee et e e e e s e e e, 3-2-1
Parameter Data TYPE..........c.ccceiiniriniiiieiiicccceee e, 3-3-1
USE Of DSPL..coooiiieete ettt et 3-4-1
Description of DSPT Commands................ococooviiiiieeeeeeeee oo, 3-5-1
Math Functions and EQUAtions...................cocoiueviviueeeeeeeeeeeeeeeeeeeeeeeeeeees 3-6-1

TABLE of CONTENTS

b J
Table of Contents (Continued)

SUBJECT PAGE
SECTION 4 - ACCESSORIEScooooiiimnienesnsenese s 4-1-1
The Super NES Super Scope® SYSEIM ..ottt e 4-1-1
Principles of the Super NES Super SCOpecoociviriiiniiniceieccceee e 4-2-1
Super NES Super Scope Functional Operationcccccevveeiiinienneiniinncenneenn 4-3-1
Super NES Super Scope Receiver FUnctions..........c..cccvveveeicininenienicncncienee. 4-4-1
GraphiCs ..o 4-5-1
Super NES Mouse Specificationscoceviriiiiiiininiieiiiiciecieseei e 4-6-1
Using the Standard BIOS ... 4-7-1
Programming CaULIONSc.coieriiriireriinieere et ereere e sieetesttesbesinesbeesesaneneeens 4-8-1
MultiPlayer 5 SpecifiCations........c..cocuereriiiriiiiiirieriieiereeesee e 4-9-1
MultiPlayer 5 Supplied BIOS ... e 4-10-1

SUPPLEMENTAL INFORMATION

Super NES Parts LIStcccccueviiiiiiiiiiiiiiiiecsescsee e 1
Game Content GUIAEIINESccoeviiiiiiiiniiesene e 3
Guidelines Concerning Commercialism and Promotion of Licensee

Products or Services in Nintendo Licensed Gamesccocceeveeniiinieiicenienicens 5
Super NES Video Timing Information.............ccccoiiiiiniiiiniencciinicccrececeeens 10
INDEX

BULLETINS

LIST of FIGURES

iii

[|
List of Figures
BOOK 11
FIGURE

I'ITLE NUMBER PAGE
Super Accelerator System Configurationcccvveeeeeeeeeeeiseseennas I-1-1.e, 1-1-3
SAS BUS IMAGEoouiiiiiiiiiiieiciestee ettt eaens I-1-2 e 1-1-4
SA-1 Block Diagram........ccoccevuerieriienieniieienieieeieiece et 1-2-Toiin, 1-2-1
Bitmap Register Files O~7ccccoiviiniiiiniiiniccee e 1-4-1 e 1-4-24
Bitmap Register Files 8~Fccccccovviiininineceee e 1-4-2 e 1-4-25
Accelerator Mode..........cccooiiiiiinieiinieieeieseece et 1-5-1 e 1-5-6
Parallel Processing Mode...........ccoeviinieniinieiieieciiceeeeeee e 1-5-2 e 1-5-7
Mixed Processing Modeccocceviviienininesicececeeeeee e 1-5-3 e 1-5-8
Character Conversion 1...........ccoceviivieriinineneneseese e 1-6-1..ooenne 1-6-1
Character CONVEISION 2.......c..coeeiiieirinieieteieteeeeeee et ere v enas 1-6-2 .. 1-6-2
Compressed Bitmap Datacccoccoveiiniiinininiinccee e 1-6-3 .. 1-6-3
Bitmap Image Projectionccccoceviriiiiiininiiinieiecceecee s 1-6-4 ... 1-6-3
Bitmap Data EXpansioncccccceeceeviiiviiniinininieicccece e 1-6-5 . 1-6-5
Memory Addresses for the Bitmap Areaccoceveevveievienieviesieseeneen, 1-6-6...c.eeeenne 1-6-6
Character Conversion Buffers..........ccccooooeeviiiiniiiiiiiiccec, 1-6-7 oo, 1-6-7
Fixed Mode Process Flow Diagram.........c.ccccoceverieienerieiiniennenieeinenenns 1-8-1. i, 1-8-2
Auto-increment Mode Process Flow Diagramcccocoooveviivcvennnnen. 1-8-2 i 1-8-3
Barrel Shift ProCess.....c..cccoviiiiniiriiiriicieiect e 1-8-3 ., 1-8-5
Normal DMA ...t 1-9-1.ine 1-9-1
Character Conversion DMA ... 1-9-2 i, 1-9-1
Super FX System Configuration..........cccccevevvevieiiiiesieciceiceeeeeeeeeveene 2-1-1ooiiiinen. 2-1-3
Game Pak ROM/RAM Bus Diagramcc.ccoooveviiiiiiiieeieieeeeeeeen. 2-1-2 i, 2-1-4
GSU Functional Block Diagram........c..ccoeeevinieiiieiiiciieccieciccecevce 2-2-T1 i, 2-2-1
Super NES CPU Memory Map......c.cococvoivveinineieeiieeeeeeeeeeeee e 2-3-1iiin, 2-3-2
Super FX Memory Map......c.ccoccviiimieieiiieeeeeeeeeeeeee e 2-3-2 i 2-3-4
Example of General Register...........cccooeviiiieiivieiicccceceee, 2-4-1 i, 2-4-2
128 Dot High BG Character Arraycccocveveeeeerieeiceeee e 2-8-1ueiieirene, 2-8-2
160 Dot High BG Character AITaycocoevvveueeieiereeereririceeeseeeeennns 2-8-2 i, 2-8-2
192 Dot High BG Character Arrayc.ccoeveveieeeeeeeeeeeeeeeeeeeeeeren 2-8-3 e 2-8-2
OBJ Character AITAY.........cccouereriiriiiieiieieceeeee et 2-8-4 .., 2-8-3
Plot Operations Assigned by CMODEccooooviiiiiiiieeeeeeee. 2-8-5. i, 2-8-13
System Block Diagram (DSP1)cooviviiiiiiieiiiccceeeeeee e 3-1-1ie, 3-1-2
Super NES CPU and DSP1 Communicationsc..cocceeveveuerenennenn. 3-1-2 i, 3-1-3
DSP1 Command EXECUtiONccooveeivieriiiieiiierceeeeeccee e 3-1-3 i, 3-1-3
Mode 20/DSP Memory Map........c.ccooveuieieiiiiiiiieieeeeeeeeeeeeeeeee e 3-1-4 ., 3-1-4
Mode 21/DSP MemMOIY Map.......ovouiiuieieieeiieeeeeceeeeeeeeeeeeeee et 3-1-5 3-1-5
Super NES/DSP1 Memory Mapping (Mode 21)ccocoovvvviiiviccnne. 3-4-1.iin, 3-4-1
DSP1 Status Register Configuration...............c.ccocveivviveeioeeeeiiiceeeeneenn 3-4-2 . 3-4-2

LIST of FIGURES

| J
List of Figures (Continued)
FIGURE

TITLE NUMBER PAGE
DSP1 Operations Flow Diagramc..ccceccoveinieiniineineieeseieennenenns 3-4-3. 3-4-3
Super NES CPU/DSP1 Operational Timing.........ccocuecvevveveeciereesrenennenens 3-4-4 .. 3-4-4
Trigonometric Calculation...........ccccevuervveviiininiecieiieceeeese e 3-5-T e 3-5-3
Vector Calculationoceiieiiiiieniniceeeee e 3-5-2 i, 3-5-4
Vector Size COMPATISONc..couevuiieriiriiriiiirieittetirneresesse e see e seaeseeseeseas 3-5-3 3-5-6
Vector Absolute Value Calculationcccceevvevvniiniicieseccienieieceee 3-54 . 3-5-7
Two-Dimensional Coordinate Rotation............ccecoeovevieviiniecieeiecieenen, 3-5-5 3-5-8
Examples of Three-Dimensional Rotation............c.ccccoeiiiiiininincennn. 3-56.cinne 3-5-11
Assignment of Projection Parameterc.cccoocooviiiiiiiiiciiciceee. 3-5-T e 3-5-13
Relationship of Sight and Projected Plane.........cc.cccoeovvviiiiiiiiiienn. 3-5-8 i 3-5-13
Calculation of Raster Data............ccoocoeiiiiiiiiiiiiiiieceeeee, 3-5-9 s 3-5-16
BG Screen and Displayed Ar€accceevvieienieiienieieieeeeeie e 3-5-10.ce. 3-5-16
Calculation of Projected Position of Object...........ccccoeveeiiiieeiireenenne. 3-5-11 i 3-5-18
Projection Image of Objectc..ccceevevieviiinininicie e 3-5-12. 3-5-19
Calculation of Coordinates for the Indicated Point on the Screen........... 3-5-13 3-5-20
Attack Point and Position Indicated on Screen (Side View) 3-5-14...nnn. 3-5-21
Attitude COMPULALION ...c.ovviiiiiiieiiiiiieiieietere ettt 3-5-15 e 3-5-23
Object Coordinate Rotated on Y AXiS ..cccceceecimieierieniiieieieerecveere e 3-5-16..ccceecnne 3-5-23
Object Coordinate Rotated on X AXiScocveveuiviiereeeiereieeeccceeeveveeina. 3-5-17 o 3-5-23
Object Coordinate Rotated on Z AXiS........cecueveieiiiicieriiieeerecieereere e 3-5-18 . 3-5-23
Conversion of Global to Objective Coordinates..............ccocvervevvrenennen. 3-5-19..e 3-5-26
Conversion of Object to Global Coordinates...............c.cccceeeveereereerennnne. 3-5-20..cinne 3-5-28
Calculation of Inner Product with Forward Attitude...................ccocu........ 3-5-21 i, 3-5-29
Position of Aircraft and Vector Codecooeeveiiiiieriiececieeeerennn 3-5-22. s 3-5-30
Calculation of Rotation Angle After Attitude Changecc.co........ 3-5-23 s 3-5-32
SIgNAl FIOW ..ottt 4-1-1. i, 4-1-1
Optical ALZNMENL......cc.cooiiiiiriiiiiiieet e 4-1-2 ., 4-1-2
Virtual Screen ALZNMENtccevieiiieiiiicieieeeiccecee e 4-1-3 .. 4-1-2
Address and Bit ASSIZNMENLScccccviriiiiiieriireicteeeee e 4-1-4.., 4-1-5
Picture Tube ..o 4-2-Toiieinen, 4-2-1
SCANNINEG.....ooviiviiiiiitiiiie ettt re e ene e 4-2-2 i 4-2-2
Area Seen by Super NES Super Scope.........cccoeveieievicciieecece, 4-2-3 e 4-2-3
Vertical POSTHONING ...c.ooueriiuiiieieiieeeeceeeceeeee e 4-2-4 ... 4-2-4
Horizontal POSItIONINGccccveiiiiiiiiicciiciececce e 4-2-5. i, 4-2-5
Horizontal/Vertical COUNter..........ccooveiiiiiiiiiiiicecececeeeeee e 4-2-6..ccenn, 4-2-6
Super NES Super Scope Block Diagram.................ccocoeeeiviieeeeeeennn. 4-3-T . 4-3-2
Super NES Super Scope Flow Diagramcccccoooovvvvveveeececsireennne. 4-3-2 i 4-3-3
Raster Signalcccoooiiiiiiiiiii s 4-3-3 i 4-3-4
Definition of One Bit.......c.ccooiiiiiiiiiiiiiceeeee e, 4-3-4..in 4-3-5
Output Signal Code.......ccooueirimiiriiiiieieccceeeeeeee e 4-3-5. . 4-3-5
Definitions 0f COAESceviriieiiriiiiiiieiieee et 4-3-6..cceiinnn 4-3-6

LIST of FIGURES

L |
List of Figures (Continued)
FIGURE

TITLE NUMBER PAGE
Raster Signal Transmission Timing..........cccocevveviviieineeieicecee e, 4-3-T o 4-3-7
Receiver Block Diagram...........cooeuevvueiininneinieeccceces e 4-4-1.cnne. 4-4-1
Operation Flow DIagramc..cccoceeeverinieiniiiniieececeeeeee e 4-4-2 . 4-4-2
Receiver/Transmitter Interface Schematic...............cooovvveviieicvicccneninnnn, 4-4-3 ., 4-4-3
One Bit Code Detection...........c.coeerueieiiieniniiieieieeeeereeeeee e 4-4-4......en 4-4-4
Cursor Mode Raster Detection Cyclec.ooovviveiiiceiciceireeieeeeeen. 4-4-5.....nnnn. 4-4-6
Trigger Mode, Single Shot.........cccooiviiiniiiiiccccecccececee e 4-4-6..ceevennne 4-4-7
Trigger Mode, Multiple ShoOts..........c.cccooiniiiniiiiiiiiceceeee 4-4-T oo 4-4-8
NOISE FIAZ ...t 4-4-8.viinen 4-4-9
NUILBIE e 4-4-9...ccvvinnn. 4-4-9
Pause Bitcooiiiiiiic s 4-4-10................ 4-4-10
Trigger, Single ShOt.......c.cccoiiiiiiiiiiiiceeec e 4-4-11........ 4-4-11
Trigger, Multiple Shots.........cccoiiiiiiiiieceee e, 4-4-12....c 4-4-12
Optical Color Sensitivity Chart..........c.cccooreieiniiniiciecceeeceeeea 4-5-1 e 4-5-2
Valid Hyper Mouse Data Stringcccoovveiiiiioiiviiceceeceeeeeee 4-6-1..cccocvvvnnnnne. 4-6-2
Serial Data Read Timing.......c.ccccoceoirinieniiineiiiieceeeeeeeee e 4-6-2....ccciiennn. 4-6-3
Explanation of Data Strings 2 Bits or Longer.........c...ccoeevvvneeevenenn.n. 4-6-3....cccuene. 4-6-6
Super NES Hyper Mouse DIimensions.............ccocveeveveeveieveeeeeereeecenen, 4-6-4 ..o 4-6-7
Standard BIOS, Output Register...........ccccveeiriiriiniiriiieceeceeevevee 4-7-1 oo 4-7-3
Examples of Speed Switching Program Subroutine Call 4-T-2 i, 4-7-4
MultiPlayer 5 Device Hardware Connectionsc.ccocoevevevevennen.n. 4-9-1 . 4-9-2
MultiPlayer 5 Read Timing Chart, SP Mode............ccoccoovveviiicicieennn 4-9-2 .. 4-9-5
Data Read Timing for Dissimilar Devices.............c.coooevieciiciiiicninenne. 4-9-3..ie 4-9-8
Valid Controller Data String............cocoeveviiiiiuicieieeeeceeeeeeeeeeeen, 4-9-4....oeiin. 4-9-12
Sample Program Display Format................cccoeveviieiiiiciiiieecieeeee, 4-10-1....cccc.e. 4-10-2

LIST of TABLES

vi

L J
List of Tables
BOOK 11
TABLE

TITLE NUMBER PAGE
Types Of INTEITUPLScuoiiiiiieiinieeee et 1-5-1T.es 1-5-2
Interrupt Identification and Clear..........cc.ccccovviieiecicieiciceecccee 1-5-2 e, 1-5-2
Interrupt Mask.........ooooiiiiiiiiiiiieeee e 1-5-3 ., 1-5-3
Sending and Receiving a MeSSage..........oceevevieveeevieieeerceeeee e, 1-5-4.en. 1-5-3
Situation Dependant VECLOTScccooeeieiirieiiiieiccceceee e 1-5-5. 1-5-4
Operating Modes and Processing Speedscccovveveveveerivveieneennnen, 1-5-6..ccunenen. 1-5-9
Horizontal Size of VRAM (CDMA RegiSter)cooooveveevieiviieenae. 1-6-1..ccennne. 1-6-6
Number of Zero Bits in BW-RAMcccoooiiiniiiiiiiicececeee 1-6-2....ccnenne, 1-6-8
Character Conversion and Data Format................cccoovovveeiveiieiiienennne, 1-6-3 ., 1-6-10
Arithmetic Operations Settings and Cyclesccocoeveveivvieeeevennnnnen. 1-7-1.e, 1-7-1
Amount of Barrel Shiftcccccveriiiiiiiieceee, [-8-1.ien. 1-8-4
Source Device SEttNgGSccovrririiieniierieieeeeeeeee e 1-9-1.inn, 1-9-3
Destination Device Settings..........ccoccoveeiriiieiiiiiciiieeeeceeee e 1-9-2 . 1-9-3
DMA Transmission Speed..........cccooceiririeiniiiiieieeeeeeceeeeeeeeee e 1-9-3., 1-9-4
Timer Modes and Their Ranges...............cccooveveiiiiviiiiciciceeeee 1-10-1............. 1-10-1
Timer INerruptsoo.oviiiiiiieee e 1-10-2............. 1-10-2
Registers Listed by Functional Groupc.ccocooooeviiiiieciieeeeeen 2-2-1oii 2-2-3
INSEIUCHION S€l.....ouiiiiiiiiiiiieie e 2-2-2 e 2-2-6
GSU General REGIStErs.........coceiiiviiiiiiiiiieieeeeeeeeeeeeee e 2-4-1.ci 2-4-1
GSU Status Register FIags..........cccoovviiiiirioiiiicccceeeeeeeeeees 2-4-2... 2-4-4
Screen HEIZNt.....co.cooiiiiiiiicee e, 2-4-3 ... 2-4-8
ColOor Gradientc.couvueiriiuioireiiieeeee e 2-4-4............... 2-4-8
Dummy Interrupt Vector Addressesocueueveeveviieveereeeeiieeeeeeee. 2-5-1.in, 2-5-4
Dummy Data...........cccocimiiiiiiineeeee e 2-5-2 i, 2-5-5
Functions of CMODEccooviiimiiiiiiccceeeeeee e 2-8-1ueieen, 2-8-9
DSP1 Command SUMMArYcccoeiriiiiiiieriiceeeee e, 3-2-Tocieinen, 3-2-1
Parameter Data Type..........ccocvuiveiiieiininiiiececce e 3-3-1Tn 3-3-1
Signal Bit Definitionscccoeeueueuiuiiieieieeceeeeeeeeeee e 4-1-1.coeen. 4-1-6
MultiPlayer 5 Switch FUNCtionccoceeuiiiieiiiiicececceeeeeeeeeeeeenn 4-9-1..cccvnenee. 4-9-3
MultiPlayer 5 Data FOrmatc.coooveueiiiiiiiieiceeeeeeeeee e, 4-9-2. . 4-9-6

SUPER ACCELERATOR SYSTEM FUNCTIONS

&

Chapter 1

Super Accelerator System Functions

The co-processor installed on the Super Accelerator System (SA-1) is an LS| developed
to work with the Super NES CPU and enhance its processing speed, graphics, and arith-
metic functions.

1.1 SA-1 FEATURES

1141

1.1.2

1.1.3

1.1.4

1.1.5

CPU CORE

The SA-1 uses a 16-bit 65C816 processor for its CPU core (SA-1 CPU).
It can process the same commands as the Super NES CPU. No new ar-
chitecture needs be learned and existing programs can be used without
modification.

Because the 65C816 is a 16-bit CPU, it efficiently processes 16-bit oper-
ations such as X and Y character coordinates.

Due to the commonality of the core CPUs, evaluation of the coprocessor
in the middle of game development is quite simple and program modifica-
tions are kept to a minimum.

CPU SPEED

The SA-1 CPU operates at 10.74 MHz, which is four times faster than the
normal operating speed of the Super NES CPU.

The SA-1 CPU and the Super NES CPU operate simultaneously, which
results in five times greater performance of the Super Accelerator System
(SAS) over the current Super NES.

INTERNAL RAM

The SA-1 has a 2 Kbyte internal work RAM (SA-1 I-RAM). This RAM can
be used as the SA-1 CPU’s page-zero stack, or as protected memory
with a backup battery, when connected to an external battery.
COMMON MEMORY MAPPING

The Super NES CPU and SA-1 CPU use the same memory mapping.
SA-1 programs can be developed with the Super NES Emulator-SE.

Subroutines can be shared by both CPUs, resulting in efficient use of
memory.
LARGE-CAPACITY MEMORY

The SAS has a total capacity of 64 Mbits of ROM and 2 Mbytes of RAM.
SRAM is used for I-RAM and back-up/work RAM (BW-RAM), and can be
protected with a backup battery.

1-1-1

SNES DEVELOPMENT MANUAL

1.1.6

1.1.7

1.1.8

1.1.9

1.1.10

1.1.11

ARITHMETIC HARDWARE

The SA-1 has hardware for high-speed execution of multiplication (16 bits
X 16 bits), division (16 bits x 16 bits), and cumulative arithmetic (3(16 bits
X 16 bits)) operations. This results in high-speed calculation of matrix and
3D arithmetic operations.

BIT-MAP DATA OPERATIONS

The SAS allows virtual bitmap VRAM to be set up in the SA-1 CPU’s
RAM area. The bitmap data in virtual VRAM can be converted to Super
NES PPU character format via hardware using DMA functions.

VARIABLE-LENGTH BIT DATA OPERATIONS

The SA-1 has a function to read ROM data as 1~16 bit variable-length
data, treating ROM data as strings of one-bit data. This allows for high-
speed expansion of compressed data.

CUSTOM DMA CIRCUIT

The SA-1 has a custom DMA ci~~uit in addition to the Super NES CPU’s
multi-purpose H-DMA. The DMA circuit performs data transfer between
ROM, RAM and SA-1 BW-RAM. During DMA transfer, bitmap-to-charac-
ter conversion, and sequential operations with the Super NES CPU multi-
purpose DMA can be performed.

TIMER FUNCTION

The SA-1 has an HV timer synchronized to the Super NES PPU. The HV
timer can be used to reference the scan line position on the screen by the
SA-1 CPU or to generate HV interrupts. The timer can also be used as a
linear timer.

INCREASED LEVEL OF SECURITY

The SA-1 is connected between the Super NES CPU and memory .
(ROM, RAM). The SA-1 ROM is also different from the standard Super
NES game pak ROM. This guards against unlicensed products and FD
copies.

SUPER ACCELERATOR SYSTEM FUNCTIONS
L -

1.2 SYSTEM CONFIGURATION

The following diagram depicts the SAS system configuration.

The SA-1 and memory (game pak ROM and BW-RAM) are installed in the game

pak. When desired, data can be protecte by connecting a backup battery to BW-
RAM or SA-1 |I-RAM.

When external RAM is not required, the system can also be configured without
BW-RAM.

Game
Pak ROM

Address

ata

 BadiUp'
SA-1 | Battery |

Optional

SAS

Address &

Data

Super NES
Control
Deck

Super NES CPU

Figure 1-1-1 Super Accelerator System Configuration

SNES DEVELOPMENT MANUAL

L
1.3 BUS IMAGE DIAGRAM

The bus image as seen by the SAS software is depicted below. The SA-1 CPU
can access game pak ROM, BW-RAM and |-RAM.

The Super NES CPU can access game pak ROM, BW-RAM, I-RAM, Super NES
PPU, Super NES WRAM and Super NES APU.

SA-1 CPU
Game Pak
ROM
I-RAM
BW-RAM
(SA-1)

Super NES Super NES

PPU WRAM

Super NES
CPU

Figure 1-1-2 SAS Bus Image

The two MPUs (Super NES CPU and SA-1 CPU) can freely access memory
(game pak ROM, BW-RAM and I-RAM). If the two MPUs try to access the same
memory at the same time, one of the MPUs is automatically excluded, and any
conflict is averted.

CONFIGURATION OF SA-1

|

Chapter 2 Configuration of SA-1
2.1 SA-1 FUNCTIONAL DESCRIPTION

The SA-1 is internally comprised of nine components. A block diagram is illustrat-

ed below.
To
GPK
ROM
>
SA-1 CPU
>
| To
(65C816) N A Arithmetic BW-RAM|
E - Circuit
R
N
A
L A Character
/\IConversion Circuit
C
o)
¥ AN Variable-Length Bit
R | Processing Circuit
0
L
I-RAM E -
- A imer
R HM Circuit
16 Kbit
DMA
Circuit
Super NES CPU
‘ I/0
{
* To
Game Pak Connector

Figure 1-2-1 SA-1 Block Diagram

1-2-1

SNES DE'

VELOPMENT MANUAL

211

2.1.2

2.1.3

21.4

2.15

2.1.6

2.1.7

2.1.8

2.1.9

SA-1 CPU
The 65C816 serves as the CPU core. It operates at 10.74 MHz.
I-RAM

The I-RAM consists of a 16 Kbit RAM. The SA-1 CPU can access the |-
RAM at 10.74 MHz in a no-wait state.

The |I-RAM data can be protected by connecting RAM to an external bat-
tery.
SUPER MMC

The Super MMC performs memory control in a map mode where the
ROM capacity exceeds 32 Mbits (Map Mode 22).

The SA-1 has a Super MMC chip emulation circuit.
The Super MMC includes a backup data protection function.
INTERNAL CONTROLLER

This controls bus access within the SA-1. It performs collision control
functions between Super NES CPU and SA-1 CPU.

ARITHMETIC CIRCUIT

The arithmetic circuit hardware performs multiplication, division, and cu-
mulative arithmetic operations.

CHARACTER CONVERSION CIRCUIT

The character conversion circuit hardware converts bitmap data to char-
acter data format.

VARIABLE-LENGTH BIT PROCESSING CIRCUIT

The variable-length bit processing circuit hardware processes data in the
game pak ROM as 1~16 bit variable-length data.

TIMER CIRCUIT

The SA-1 has a HV timer which is equivalent to the Super NES PPU tim-
er. The timer can also be used as an 18-bit linear timer.

DMA CIRCUIT

The DMA circuit transfers data between game pak ROM, BW-RAM and I-
RAM.

1-2-2

CONFIGURATION OF SA-1

]

2.2 MEMORY ACCESS

2.2.1

GAME PAK ROM ACCESS

The Super NES CPU and SA-1 CPU share the entire game pak ROM
area and can both freely access it. This is known as 2-phase access.

When only the SA-1 CPU uses game pak ROM, the SA-1 CPU operates
at 10.74 MHz. During this period the Super NES CPU executes its pro-
gram on Super NES WRAM.

When both the Super NES CPU and SA-1 CPU execute a program on
game pak ROM, the SA-1 CPU runs at 5.37 MHz and the Super NES
CPU runs at 2.68 MHz.

The SAS cannot utilize the Super NES CPU’s high-speed mode (3.58
MHz). It operates at a fixed speed of 2.68 MHz even when only the Super
NES CPU uses game pak ROM. This timing is illustrated below for each
of these conditions.

2.2.1.1 ONLY SA-1 CPU USES ROM

y|cjcjcjcjcjcjcjcjcjcjc|c|cjci|c

{
SA-1

CPU

2.2.1.2 SUPER NES CPU ACCESSES ROM DURING SA-1 CPU OP-

ERATIONS
C=SA-1 CPU
10.74 MHz S-CPU=Super NES CPU
— —5.37MHz

C|C|sCPU[C|C|C|C|SCPU[C|C|S-CPU|C

4

[
SA-1 ! ! !
CPU SA-1 SA-1 SA-1
CPU Wait CPU Wait CPU Wait

2.2.1.3 BOTH PROCESSORS ACCESS ROM (2-PHASE ACCESS)

C=SA-1 CPU
10.74 MHz . . S-CPU=Super NES CPU
—— — — ~—5.37MHz

4 [C|SCPUIC|C|S-CPU|C|C|S-CPU|C|C |S-CPU
!
sh1 | ! T !
CPU SA-1 SA-1 SA-1 SA-1
CPU Wait CPU Wait CPU Wait CPU Wait

1-2-3

SNES DEVELOPMENT MANUAL

E e

22.2 BW-RAM ACCESS

The Super NES CPU and SA-1 CPU share all areas of BW-RAM and can

freely access it (two-phase access).

The SA-1 CPU accesses BW-RAM at 5.37 MHz and the Super NES CPU

accesses BW-RAM at 2.68 MHz.

2.2.2.1 ONLY SA-1 CPU USES BW-RAM
S «—5.37MHz
Read | Read Read | Write Read
No Access I No Access

No Access

2.2.2.2 SUPER NES CPU ACCESSES BW-RAM DURING SA-1 CPU

OPERATIONS
. . C-CPU=SA-1 CPU Access
_— ~—25.37MHz S-CPU=Super NES CPU Access
C-CPU C-CPU | S-CPU C-CPU | C-CPU | S-CPU
No Access No Access

2.22.3 BOTH PROCESSORS ACCESS BW-RAM (2-PHASE ACCESS)

C-CPU=SA-1 CPU Access

— —>5.37MHz S-CPU=Super NES CPU Access
S-CPU | C-CPU | S-CPU | C-CPU | S-CPU S-CPU | C-CPU
No Access

1-2-4

CONFIGURATION OF SA-1

]

2.2.3 SA-11-RAM ACCESS

The Super NES CPU and SA-1 CPU can both access all areas of SA-1 I-
RAM at any time.

2.2.3.1 ONLY THE SA-1 CPU ACCESSES I-RAM

C=SA-1 CPU Access

—» «—10.74 MHz

4

C

C

C

Cc

|
SA-1

CPU

\/

No Access

NSOV

No Access

No Access No Access

2.2.3.2 BOTH SA-1 CPU AND SUPER NES CPU ACCESS I-RAM

Super

NES CPU
— % +—10.74 MHz

C=SA-1 CPU Access

S=

Super NES CPU Access

4
I

c|C|sS

Cc

c|sS C S

SA-1

CPU No Access

NS

No Access

S

No Access

1-2-5

SNES DEVELOPMENT MANUAL

e

Super Accelerator Memory Map

Chapter 3

MEMORY MAP FROM SUPER NES CPU PERSPECTIVE

3.1

‘Seale asay] 0} ssadoe

(Mg Y9 XVYIN) WOH-IN

aney sisjsibal Ndd pue NdD SIN Jedng ay) Alup @ 0 W8 WIL WKZ WZE WOP WSy WIS Wp9

'49~08

pue 4€~00 sjueq ul H444/.~HO0009
sossaippe o} abew sy indino pue 41~00

S300|q WO} %00|q BUO }08]8s UeD Jasn ay] :abew| \NvH-ME

H0000

H0002
Hooece

Hoove
Hoooe

Hoose
Hooor

H0009

HO0008

Hooov

H000D

Ho003

Hdd44

mibuii

HIHInm
WVHM 0oe0)

f

19]1SID8Y | -¥S (10 (60)
v4d-| -V
0 20)§v0)
(41) ~ (00) ebew cokao
WvH-Mmg
o o ooloe L
L | ereg
' ” Xd
M«ND v_CNm so))ao
XD 10
yueg H
10 obeW| Ksojao)
[0] oY
ebew| NOY ded
jed swen awer)
109j8S 108j8S L0)0)
oohoquulﬂﬂlom e pr| Ly

— LS <TWULC NS N-+~0 =©X

[a1]

(81)

(61)

Vi)

aL)

o)

ar)

31),

1)

14

—~S<COW [wuw — <«]

0T — XTaC=

|| ALLLLLLLLT LU LY
WVHM

it

L X d
191SIb8Y |-vS
NAVH-| 1-YS

(41) ~ (00) 8bew)
WvH-Mmg

<>

.@ n@ “—©—@ -©—©“ .

NOOWE ZWw

¢ P9 i ERR/E]

(NdD SaN Jadns ‘Sys) dey Alowsp S3N Jedns

1-3-1

SUPER ACCELERATOR MEMORY MAP

1 CPU PERSPECTIVE

3.2 MEMORY MAP FROM SA-

aney sig)sibal Ndd pue NdD SaN Jedns ay Alug R

‘'seale asey) 0} ssaooe

'49~08

pue 4€~00 s)jueq ul H444/~HO0009
sessaippe 0} abew sy Jndino pue 4/~00

S)00]q WOJ} %00|q BUO }08|8s Ued Jasn 8y :abew| NvH-Mg

HO0000
H0080

H0009

HO0008

Hooov

H000O

H0003

HA44d

N WVH- L-YS

ealy JaIsibay |-VS

\Nebew| NyY-| [-VS.

auQ 199j9S
42) ~ (00)ebew
WvYH-Mg
® 0 00|00
L ejeq
: ! Xa
eleq yueg
XO 10
yueg [+]
1o abew
[o] WoYH
abew| NOY yed
}ed swen) awex)
IRETES 108j8S
001020 80 TF 0c TQ

©00)§(80

10)}(60)]

20)

vie)

VO

80

Qo

30,

0)

14134

(81)

(61)

= ® X

vi

gl

ot

ak

—CLS C<CWLC S M=~ 0

3t

1]

30

544

—S<OW [wu —ww]

0 — O«

(Mg W9 XYIN) WOY-IN

20)

(82

191s1beY 1-YS

abew|NVH-| L-VS

\4
3
4
v
d
v auQ 10818S
solf Il (42) ~ (00)ebew)
(N WyH-Mg
_ O © 00|
(v0IR & oL ' '
_Q ejeq eleq
X3 Xd
(solf Y Kaz yueg yuegq
_ 10 10
g 2] €]
koo N abew) abew
NOH NO4d
ed Jed
awer) awen)
_R—u 4L, wom_mm #Ow_mm @ @ @ @@ @
S o9 d9lo/psiz P& PV Pg po pd P3P

(ndD 1-VS ‘sys) den Alowsy SIN 1adng

1-3-2

SNES DEVELOPMENT MANUAL

{

3.3 SUPER MMC

The Super MMC is a Super NES memory controller which can support a ROM ca-
pacity in excess of 32 Mbits. The memory map used by the Super MMC is called
Map Mode 22. The SA-1 contains the Super MMC memory control function. Map
Mode 22 features are described below.

3.3.1

3.3.2

3.3.3

ROM BANK SWITCHING

The entire mask ROM is divided into 8 Mbit blocks, which can be project-
ed onto the 8 Mbit areas, 0000H~FFFFH in banks COH~CFH, DOH~DFH,
EOH~EFH, and FOH~FFH. The same 8 Mbit data can be projected onto
multiple areas. v

ROM IMAGE PROJECTION

The ROM data in banks CXH, DXH, EXH, and FXH, described above, is
image projected onto, respectively, the 8 Mbit area 8000H~FFFFH, in
banks 00H~1FH, 20H~3FH, 80H~9FH, and AOH~BFH.

The image projection method used is different from that used in Map
Mode 21 in that the ROM data is projected in successive order, as dem-
onstrated below.

C0:0000H~C0:7FFFH — 00:8000H~00:FFFFH
C0:8000H~CO:FFFFH — 01:8000H~01:FFFFH
C1:0000H~C1:7FFFH — 02:8000H~02:FFFFH

CF:8000H~CF:7FFFH — 1F:8000H~1F:FFFFH

It is also possible to project the first 8 Mbits of data in the mask ROM
(00:0000H~0F:FFFFH) onto bank 00H~1FH, regardless of the settings
for banks CXH, DXH, EXH, and FXH. In a similar manner, data in
10:0000H~1F:FFFFH, 20:0000H~2F:FFFFH, and 30:0000H~3F:FFFFH
can be projected onto banks 20H~3FH, 80H~9FH, and AOH~BFH, re-
spectively.

BACKUP RAM

Backup RAM is assigned to areas in bank 40H, justified to 0000H, as il-
lustrated below.

16K RAM: 40:0000H~40:07FFH
64K RAM: 40:0000H~40:1FFFH
256K RAM: 40:0000H~40:7FFFH
1M RAM: 40:0000H~41:FFFFH

1-3-3

SUPER ACCELERATOR MEMORY MAP

=

3.3.4

3.3.5

3.3.6

Backup RAM is image projected to the 64 Kbit areas in 6000H~7FFFH of
banks 00H~3FH and 80H~BFH. The backup area can be divided into 64
Kbit blocks. Any of these blocks can be projected as images. The data is
identical in banks 00H~3FH and 80H~BFH.

PROTECTION OF BACKUP DATA

A write-protect setting is available to prevent data in the backup data area
(banks 40H~7DH from being damaged. This setting protects data even in
case of a CPU crash.

CONTROL REGISTERS

The Super MMC control registers are assigned to 2200H~23FFH of
banks 00H~3FH and 80H~BFH.

CAUTIONS

Note that when the SA-1 Super MMC emulation function is used, the fol-
lowing specifications for the Super MMC do not apply.

3.3.6.1 HIGH SPEED MODE

The SAS cannot use the Super NES CPU high-speed mode
(3.58 MHz).

3.3.6.2 ROM AND BACKUP RAM AREA

The maximum mask ROM area is 64 Mbits. The maximum back-
up RAM area is 2 Mbits.

3.3.6.3 SHARED ROM MEMORY MAP

The Super NES CPU and SA-1 CPU share a common ROM
memory map.

The ROM data in banks CXH, DXH, EXH, and FXH is identical
(the same data is projected) for the Super NES CPU and SA-1
CPU. However, the program can be executed in different banks
for each processor.

3.3.6.4 BACKUP RAM PROTECTION
The image projected to Backup RAM is specified separately.

The RAM data which is projected to the backup RAM image area
in 00H~3FH and 80H~BFH can be specified separately for the
Super NES CPU and SA-1 CPU.

1-3-4

SNES DEVELOPMENT MANUAL

L

3.3.6.5 SA-11-RAM PRE-ASSIGNED

SA-1 internal RAM (I-RAM) is assigned according to memory
mapping.

The I-RAM is assigned to 3000H~37FFH in banks 00H~3FH and
80H~BFH during Super NES CPU access and to 3000H~37FFH
and 0000H~07FFH in banks 00H~3FH and 80H~BFH during
SA-1 CPU access.

3.4 VECTORS AND ROM-REGISTERED DATA
Set the address for the Super NES CPU Vectors and ROM-registered data to

00:7FBOH~00:7FFFH. When set to this area, they are assigned to
FFBOH~FFFFH in bank 00H at Super NES start-up.

1-3-5

SA-1 INTERNAL REGISTER CONFIGURATION

]

Chapter 4 SA-1 Internal Register Configuration

The SA-1 internal registers are assigned to addresses 2200H~23FFH in the Super NES
CPU and SA-1 CPU banks 00H~3FH and 80H~BFH. Registers with addresses 22**H
are write registers and those with addresses 23**H are read registers.

4.1 EXPLANATION OF REGISTERS
41.1 SA-1 CPU CONTROL (CCNT)

Access: Super NES CPU Write
Address: **2200H

Size: 8 bits

Initial value: 20H

D7 D6 D5 D4 D3 D2 D1 DO

SA-1 | SA-1| SsA-1 SA-1
cPu | CPU| cPu | cPu | SMEG3|SMEG2|SMEG1|SMEGO| 2200H
IRQ | RDY Bf RESB | NMI

SA-1 CPU IRQ: SA-1 CPU IRQ (from Super NES CPU)
0: No Interrupt
1: Interrupt

SA-1 CPU RDY B: Ready
0: Ready
1: Wait

SA-1 CPU RESB: SA-1 CPU reset
0: Cancel
1: Reset

SA-1 CPU NMI: SA-1 CPU NMI (from Super NES CPU)
0: No Interrupt
1: Interrupt

SMEGO~SMEG3: Message from Super NES CPU to SA-1 CPU

1-4-1

SNES DEVELOPMENT MANUAL

[

4.1.2

413

SUPER NES CPU INT ENABLE (SIE)

Access: Super NES CPU Write
Address: **2201H

Size: 8 bits

Initial value: O0H

D7 D6 D5 D4 D3 D2 D1 DO

SA-1
CPU CHDMA 2201H
IRQEN 0 IRQEN 0 0 0 0 0

SA-1 CPU IRQEN: IRQ enable/disable from the SA-1 CPU
0: Disable
1: Enable

CHDMA IRQEN: Character conversion DMA IRQ enable/disable
0: Disable
1: Enable

SUPER NES CPU INT CLEAR (SIC)

Access: Super NES CPU Write
Address: **2202H

Size: 8 bits

Initial value: O0H

D7 D6 D5 D4 D3 D2 D1 DO

SA-1
CPU CHDMA 2202H
IRQCL 0 IRQCL 0 0 0 0 0

SA-1 CPU IRQCL: IRQ clear from the SA-1 CPU
0: No change
1: Clear

CHDMA IRQCL: Character conversion DMA IRQ clear
0: No change
1: Clear

1-4-2

SA-1 INTERNAL REGISTER CONFIGURATION

]
4.1.4 SA-1 CPURESET VECTOR (CRV)
Access: Super NES CPU Write
Address: **2203H, **2204H
Size: 16 bits
Initial value: Nonspecific
D7 D6 D5 D4 D3 D2 D1 DO
SA-1 CPU Reset Vector
| 2203H
CRV7{ CRV6| CRV5| CRV4 | CRV3| CRV2 | CRV1] CRVO
SA-1 CPU Reset Vector
2204H
CRV15|CRV14| CRV13|CRV12{CRV11|CRV10| CRV9 | CRV8
4.1.5 SA-1 CPUNMI VECTOR (CNV)
Access: Super NES CPU Write
Address: **2205H, **2206H
Size: 16 bits
Initial value: Nonspecific
D7 D6 D5 D4 D3 D2 D1 DO
SA-1 CPU NMI Vector (Low) 2205H
CNV7] CNV6 | CNV5 | CNV4 | CNV3 | CNV2 | CNV1 | CNVO
SA-1 CPU NMI Vector (High) 2206H
CNV15{CNV14|CNV13[CNV12|CNV11{CNV10| CNV9 | CNV8
41.6 SA-1 CPUIRQ VECTOR (CIV)
Access: Super NES CPU Write
Address: **2207H, **2208H
Size: 16 bits
Initial value: Unspecified
D7 D6 D5 D4 D3 D2 D1 DO
SA-1 CPU IRQ Vector (Low)
2207H
CIV7 | Clve | CIV5 | Clv4a | CIV3 | CIV2 | CIV1 | CIVO
SA-1 CPU IRQ Vector (High)
2208H
CIVi5] CIV14] CIV13]| CIVi2| CIV11[CIV10| CIV9 | CIVS

1-4-3

SNES DEVELOPMENT MANUAL

[1
4.1.7 SUPER NES CPU CONTROL (SCNT)

Access: SA-1 CPU Write

Address: **2209H

Size: 8 bits

Initial value: QO0OH
D7 D6 D5 D4 D3 D2 D1 DO

SNES | SNES SNES

CPU CPU CPU 2209H
IRQ IVSW 0 NVSW | CMEG3| CMEG2 | CMEG1 | CMEGO

Super NES

CPU IRQ: IRQ from SA-1 CPU to Super NES CPU
0: No IRQ interrupt
1: IRQ interrupt

Super NES

CPU IVSW: Super NES CPU IRQ vector selection
0: Game pak ROM
1: Super NES CPU IRQ vector register

Super NES

CPU NVSW Super NES CPU NMI vector selection

0: Game pak ROM
1: Super NES CPU NMI vector register

CMEGO~CMEGS3: Message from SA-1 CPU to Super NES CPU

1-4-4

SA-1 INTERNAL REGISTER CONFIGURATION

B
4.1.8 SA-1 CPU INT ENABLE (CIE)
Access: SA-1 CPU Write
Address: **220AH
Size: 8 bits
Initial value: O0H
D7 D6 D5 D4 D3 D2 D1 DO
SNES SNES
CPU Timer DMA CPU 220AH
IRQEN | IRQEN | IRQEN | NMIEN 0 0 0 0
Super NES
CPU IRQEN: IRQ control from Super NES CPU to SA-1 CPU
0: Disable
1: Enable
Timer IRQEN: IRQ control from timer to SA-1 CPU
0: Disable
1: Enable
DMA IRQEN: IRQ control to SA-1 CPU at end of SA-1 DMA
0: Disable
1: Enable
Super NES
CPU NMIEN: NMI control from Super NES CPU to SA-1 CPU

0: Disable
1: Enable

1-4-5

SNES DEVELOPMENT MANUAL

[

4.1.9 SA-1 CPUINT CLEAR (CIC)

Access: SA-1 CPU Write
Address: **220BH
Size: 8 bits

Initial value: OOH

220BH

D7 D6 D5 D4 D3 D2 D1 DO
SNES SNES
CPU Timer DMA CPU

IRQCL | IRQCL | IRQCL | NMICL 0 0 0 0

Super NES

CPU IRQCL.: IRQ clear from Super NES CPU to SA-1 CPU
0: No change
1: Clear

Timer IRQCL.: IRQ clear from timer to SA-1 CPU
0: No change
1: Clear

DMA IRQCL: IRQ clear to SA-1 CPU at end of SA-1 DMA
0: No change
1: Clear

Super NES

CPU NMICL.: NMI clear from Super NES CPU to SA-1 CPU
0: No change
1: Clear

1-4-6

SA-1 INTERNAL REGISTER CONFIGURATION

N

4.1.10 SUPER NES CPU NMI VECTOR (SNV)

4.1.11

Access: SA-1 CPU Write
Address: **220CH, **220DH
Size: 16 bits

Initial value: Nonspecific

D7 D6 D5 D4 D3 D2 D1 DO

Super NES CPU NMI Vector (Low)

220CH
SNV7 | SNV6 | SNV5[SNV4 | SNV3 | SNV2 | SNV1 | SNVO

Super NES CPU NMI Vector (High)

220DH
SNV15[SNV14] SNV13| SNV12]SNV11[SNV10] SNV9 | SNV8

SUPER NES CPU IRQ VECTOR (SIV)

Access: SA-1 CPU Write
Address: **220EH, **220FH
Size: 16 bits

Initial value: Nonspecific

D7 D6 D5 D4 D3 D2 D1 DO

Super NES CPU IRQ Vector (Low)

220EH
SIV7 | SIve | SIV5 | SIv4 | SIV3 | SIv2 | SIV1 | SIVO

Super NES CPU [RQ Vector (High

220FH
SIV15) SIV14] SIVi13| SIVi2| SIvi1] SIV10| SIVv9 | SIV8

1-4-7

SNES DEVELOPMENT MANUAL

(

4.1.12

4.1.13

H/V TIMER CONTROL (TMC)

Access: SA-1 CPU Write
Address: **2210H

Size: 8 bits

Initial value: OOH

D7 D6 D5 D4 D3 D2 D1 DO
HVSELBl O 0 0 0 0 VEN | HEN
HVSELB: Select HV timer
0: HV Timer

1: Linear Timer

VEN, HEN: V count enable, H count enable
00: Disable both H and V

01: Enable H only: IRQ at H timer value
10: Enable V only: IRQ at V timer value
11: Enable both H and V: IRQ at H/V timer values

SA-1 CPU TIMER RESTART (CTR)

Access: SA-1 CPU Write
Address: **2211H
Size: 8 bits

Initial value: Nonspecific

D7 D6 D5 D4 D3 D2 D1

DO

Writing any value to this register restarts the timer at 0.

1-4-8

2210H

2211H

SA-1INTERNAL REGISTER CONFIGURATION

1
4.1.14 SET H-COUNT (HCNT)
Access: SA-1 CPU Write
Address: **2212H,**2213H
Size: 16 bits
Initial value: Nonspecific
D7 D6 D5 D4 D3 D2 D1 DO
H-Count (Low)
2212H
H7 H6 H5 H4 H3 H2 H1 HO
H-Count (High)
2213H
0 0 0 0 0 0 0 H8
HV timer: Timer IRQ H count value (0~340)
Linear timer: Lower 9 bits of the timer IRQ linear counter (0~511)
4.1.15 SET V COUNT (VCNT)
Access: SA-1 CPU Write
Address: **2214H, **2215H
Size: 16 bits
Initial value: Nonspecific
D7 D6 D5 D4 D3 D2 D1 DO
V-Count (Low)
2214H
V7 V6 V5 V4 V3 V2 V1 VO
V-Count (High)
2215H
0 0 0 0 0 0 0 V8

HV timer: Timer IRQ V count value

NTSC, 0~261
PAL, 0~311

Linear timer: Upper 9 bits of the timer IRQ linear counter (0~511)

1-4-9

SNES DEVELOPMENT MANUAL

[

4.1.16 SET SUPER MMC BANK C (CXB)

Access: Super NES CPU Write
Address: **2220H

Size: 8 bits

Initial value: 0OH

D7 D6 D5 D4 D3 D2 D1 DO

2220H
CBM 0 0 0 0 CB2 | CB1 | CBO

CBM: CXH Bank Image Projection

1. CXH bank data is copied into addresses
8000H~FFFFH of banks 0XH~1XH (shaded).

0: The game pak ROM area @ is copied to ad-
dresses 8000H~FFFFH of banks OXH~1XH.

FX EX DX CX BX AX 9X 8X 7X 6X 5X 4X 3X 2X 1X 0X

FFFFH

N

@)

fl s000H

\S

AN

T 0000H
7F:FFFFH - -------- ROM Area SeleCtlon (CBO~CB2)
B 70:00001 A [CB2]CB1]CBO|ROM Area
: g 60:0000H 0 0 0 @
|] s0000oH 0 0 1 ®
L] 0000 64 Mbit 0 1 0 ®
R 30:0000H 0 1 1 ®@
20:0000H 1 0 0 ®
@ 10:0000H - - - - 1 0 1 ®
-l @ 1 smoit ¥ 1 1 0 o
00:0000H -¥ = - - - -\- - 1 1 1

1-4-10

SA-1 INTERNAL REGISTER CONFIGURATION

1

4.1.17 SET SUPER MMC BANK D (DXB)

Access: Super NES CPU Write
Address: **2221H

Size: 8 bits

Initial value: 0O1H

D7 D6 D5 D4 D3 D2 D1 DO

2221H

DBM 0 0 0 0 CB2 | CB1 | CBO

DBM: DXH Bank Image Projection

1: DXH bank data is copied into addresses
8000H~FFFFH of banks 2XH~3XH (shaded).

0: The game pak ROM area @ is copied to ad-
dresses 8000H~FFFFH of banks 2XH~3XH.

FX EX DX CX BX AX 9X 8X 7X 6X 5X 4X 3X 2X 1X 0X

FFFFH

ON

DANNNNEANNNNNNNNNNNNNGANNNN

8000H

A

0000H

ZEFFEEH - <« - - oo - ROM Area Selection (CB0~CB2)
70:0000H A [CB2[CB1[CBO|ROM Area

60:0000H
50:0000H
40:0000H
30:0000H

64 Mbit

20:0000H

|
OIPO®O|e0|®

—_| =2 OO |10 |0

0
1
0
1
0
1
0
3

@QVBEEE

1-4-11

SNES DEVELOPMENT MANUAL

4.1.18 SET SUPER MMC BANK E (EXB)

Access: Super NES CPU Write
Address: **2222H

Size: 8 bits

Initial value: 02H

D7 D6 D5 D4 D3 D2 D1 DO

2222H

EBM 0 0 0 0 CB2 | CB1 | CBo

EBM: EXH Bank Image Projection

1. EXH bank data is copied into addresses
8000H~FFFFH of banks 8XH~9XH (shaded).

0: The game pak ROM area ® is copied to ad-
dresses 8000H~FFFFH of banks 8XH~9XH.

FX_EX DX CX BX AX 9X 8X 7X 6X 5X 4X 3X 2X 1X 0X

FFFFH

Z
Z
g 8000H
%
77,
©110]
Z
%
/
0000H
e ROM Area Selection (CBO~CB2)
B 7000001 ﬁ CB2 [CB1] CBO | ROM Area
: g 60:0000H 0 0 0 @
e 50:0000H 0 0 1 ®
L | o000oH 64 Mbit 0 1 0 ®
5 30:0000H 0 1 1 @
R 20:0000H 1 0 0 ®
e 10:0000H -4 - - * 1 0 1 ®
wooooon 4N [T 1110 @
1 1 1

1-4-12

SA-1 INTERNAL REGISTER CONFIGURATION

J

4.1.19 SET SUPER MMC BANK F (FXB)

Access: Super NES CPU Write
Address: **2223H

Size: 8 bits

Initial value: 03H

D7 D6 D5 D4 D3 D2 D1 DO

2223H

FBM 0 0 0 0 CB2 | CB1 | CBO

FBM: FXH Bank Image Projection

1: FXH bank data is copied into addresses
8000H~FFFFH of banks AXH~BXH (shaded).

0: The game pak ROM area @ is copied to ad-
dresses 8000H~FFFFH of banks AXH~BXH.

FX EX DX CX BX AX 9X 8X 7X 6X 5X 4X 3X 2X 1X 0X

7; FFFFH
7
7Z
®1®
? @VE'®
Z
Z
? 8000H
é
/4
G35
Z
%
0000H
ZEEEEEH - - < = - < ROM Area Selection (CB0~CB2)
B 70100001 A [CB2[CBT]CBO|ROM Area
: g 60:0000H 0 0 0 @
i 50:0000H 0 0 1 @
ml g 40:0000H 64 Mbit 0 1 0 ®
e 30:0000H 0 1 1 ®@
20:0000H 1 0 0 ®
: g 10:0000H -p- - - 1 0 1 ®
00:0000H t smoit ¥ 1 1 (1)

1-4-13

SNES DEVELOPMENT MANUAL

4.1.20 SUPER NES CPU BW-RAM ADDRESS MAPPING (BMAPS)

Access: Super NES CPU Write
Address: **2224H

Size: 8 bits

Initial value: O0H

D7 D6 D5 D4 D3 D2 D1 DO

2224H

0 0 0 SBM4 | SBM3 | SBM2 [SBM1 | SBMO

SBMO0~4: BW-RAM Address Image Mapping for Super NES
CPU

The BW-RAM image to be mapped to addresses
6000H~7FFFH of banks 00H~3FH and 80H~BFH is
user selectable from 00~1F.

FX CX BX AX 9X 8X 7X 43 42 41 40 3X 2X 1X 0OX
1F{17|0F|07

1E|16|0E|06
1D|15|0D|05
1C|14|0C|04 8000H
18[13(08|03}/ 6000H
1A[12|0A|02
19/11/09(01
18/10(08(00

FFFFH

0000H

Select one
from 00~1F
A

Note: The same image is mapped to all areas, (i.e.,
00:6000H~00:7FFFH, 01:6000H~01:7FFFH
BF:6000H~BF:7FFFH).

1-4-14

SA-1 INTERNAL REGISTER CONFIGURATION

1

4.1.21 SA-1 CPU BW-RAM ADDRESS MAPPING (BMAP)

Access: SA-1 CPU Write
Address: **2225H
Size: 8 bits

Initial value: O0H

D7 D6 D5 D4 D3 D2 D1 DO

2225H

SW46| CBM6 | CBM5| CBM4 | CBM3 | CBM2 | CBM1 | CBMO

CBMO0~CBME: BW-RAM Address Image Mapping for SA-1 CPU

This selects the BW-RAM image to be mapped to
the SA-1 CPU at addresses 6000H~7FFFH of banks
O0OH~3FH and 80H~BFH.

SW46: Specifies the BW-RAM source to be projected
0: Banks 40H~43H are displayed in 32
blocks using CBM0~CBM4.
1. Banks 60H~6FH are displayed in 128
blocks using CBMO~CBM6.
FX CX BX AX 9X 8X 7X6F 60 43 42 41 40 3X 2X 1X OX
7F{ 07|} |1F|17[0OF |07
78 [j06|[| 1E|16|0E| 06
70 Y05 }{1D|15|0D|05
7a\[041(1C|14|oc]04 8000
78 }lod |[18[13oB|03[Z 6000H
7A [102{{[1A]12]0A] 02
79| \[o1] \[19]11]09] 01
78| | jool || 18] 10] 08|00

FFFFH

0000H

Select one from 00~7F
A

Note: The same image is mapped to all areas, (i.e.,
00:6000H~00:7FFFH, 01:6000H~01:7FFFH
BF:6000H~BF:7FFFH).

1-4-15

SNES DEVELOPMENT MANUAL

[

4.1.22

4.1.23

SUPER NES CPU BW-RAM WRITE ENABLE (SBWE)

Access: Super NES CPU Write
Address: **2226H

Size: 8 bits

Initial value: OOH

D7 D6 D5 D4 D3 D2 D1 DO

2226H
SWEN 0 0 0 0 0 0 0
SWEN: Cancels BW-RAM write protection from Super NES
CPU
0: Protect
1: Write enable
SA-1 CPU BW-RAM WRITE ENABLE (CBWE)
Access: SA-1 CPU Write
Address: **2227H
Size: 8 bits
Initial value: OOH
D7 D6 D5 D4 D3 D2 D1 DO
2227H
CWEN| 0 0 0 0 0 0 0
CWEN: Cancels BW-RAM write protection from SA-1 CPU
0: Protect

1: Write enable

1-4-16

SA-1 INTERNAL REGISTER CONFIGURATION

4.1.24 BW-RAM WRITE-PROTECTED AREA (BWPA)

Access: Super NES CPU Write
Address: **2228H

Size: 8 bits

Initial value: FFH

D7 D6 D5 D4 D3 D2 D1 DO

0 0 0 0 | BWP3|BWP2| BWP1 | BWPO 2228H
BWPO0-~3: BW-RAM Write Protected Area Setting
BW-RAM Write Protected Area
BWP3 | BWP2 | BWP1 | BWPO Area Size (bits)
0 0 0 0 400000 - 4000FF 2K
0 0 0 1 400000 - 4001FF 4K
0 0 1 0 400000 - 4003FF 8K
0 0 1 1 400000 - 4007FF 16K
0 1 0 0 400000 - 400FFF 32K
0 1 0 1 400000 - 401FFF 64K
0 1 1 0 400000 - 403FFF 128K
0 1 1 1 400000 - 407FFF 256K
1 0 0 0 400000 - 40FFFF 512K
1 0 0 1 400000 - 41FFFF 1M
1 0 1 0 400000 - 43FFFF 2M

At start-up, all areas are write-protected.

1-4-17

SNES DEVELOPMENT MANUAL

|

4.1.25 SA-1I-RAM WRITE PROTECTION (SIWP)
Super NES CPU Write

Access:
Address:

**2229H

Size: 8 bits
Initial value: OQH

D7 D6 D5 D4 D3 D2 D1 DO
2229H
SIWP7| SIWP6| SIWP5| SIWP4| SIWP3| SIWP2| SIWP1 | SIWPO
SIWPO-~7: SA-1 |-RAM Write Protection Setting
0: Write disable
1: Write enable

SIWPO: Sets 3000H ~ 30FFH e A
SIWP1: Sets 3100H ~ 31FFH A
SIWP2: Sets 3200H ~ 32FFH 3700H
SIWP3: Sets 3300H ~ 33FFH @
SIWP4: Sets 3400H ~ 34FFH 3600H ®
SlWPS SetS 3500H ~ 35FFH 3500H
SIWP6: Sets 3600H ~ 36FFH ® 16Kbit
SIWP7: Sets 3700H ~ 37FFH 3400H @

3300H

®
3200H ®
3100H e
2Kbit
3000H @ é'

1-4-18

SA-1 INTERNAL REGISTER CONFIGURATION

4.1.26 SA-11-RAM WRITE PROTECTION (CIWP)

Access: SA-1 CPU Write
Address: **222AH
Size: 8 bits

Initial value: OOH

D7 D6 D5 D4 D3 D2 D1 DO

222AH

CIWP7| CIWP6| CIWPS5| CIWP4| CIWP3| CIWP2| CIWP1|CIWPO

CIWPO~CIWP7: SA-11-RAM write protection setting

0: Write disable
1: Write enable

CIWPO: Sets 3000H ~ 30FFH
0000H ~ 00FFH g7¢FH A7EEH- - - e e

CIWP1: Sets 3100H ~ 31FFH A
0100H ~ 01FFH 0700H @ 3700H
CIWP2: Sets 3200H ~ 32FFH 0600H 3600H
0200H ~ 02FFH ®
CIWP3: Sets 3300H ~ 33FFH 0500H 3500H
0300H ~ 03FFH gu00u| 2 fa4001 16Kbit
CIWP4: Sets 3400H ~ 34FFH ®@
0400H ~ 04FFH 0300H o) 3300H
CIWP5: Sets 3500H ~ 35FFH
0200H - OSFFH 0200H 5 3200H
CIWP6: Sets 3600H ~ 36FFH 0100H 3100H - ;0 .
0600H ~ 06FFH @ 2Kbit

CIWP7: Sets 3700H ~ 37FFH 0000H 3000H- - %-------%
0700H ~ O7FFH

1-4-19

SNES DEVELOPMENT MANUAL

|

4.1.27 DMA CONTROL (DCNT)
Access: SA-1 CPU Write

Address:
Size: 8 bits

Initial value: OOH

D7 D6

**2230H

D5 D4 D3 D2 D1 DO

DMAEN| DPrio

CDEN|CDSEL| © DD SD1 | SDO

2230H

DMAEN:

DPrio:

DD:

SDO, SD1:

DMA Enable Control

0: DMA disable
1: DMA enable

Processing priority between SA-1 CPU and DMA

0: SA-1 CPU priority
1: DMA priority

Destination device

0: SA-1 I-RAM
1: BW-RAM

Source Device

SD1

SDo Device

0 Game Pak ROM

1 BW-RAM

0 SA-1 I-RAM

CDEN:

CDSEL:

DMA mode selection

0: Normal DMA
1: Character conversion DMA

Character conversion DMA type

0: SA-1 CPU — SA-1 I-RAM write (CHR conv 2)
1: BW-RAM — SA-1 I-RAM transfer (CHR conv 1)

1-4-20

SA-1 INTERNAL REGISTER CONFIGURATION

|
4.1.28 CHARACTER CONVERSION DMA PARAMETERS (CDMA)
Access: SA-1 CPU/Super NES CPU Write
Address: **2231H
Size: 8 bits
Initial value: OOH
D7 D6 D5 D4 D3 D2 D1 DO
2231H
CHDEND 0 0 SIZE2 | SIZE1 | SIZEO| CB1 CBO0
CBO0 and CB1: Character conversion DMA color mode
CB1 | CBO Character Format
0 0 8 Bit/Dot
0 1 4 Bit/Dot
1 0 2 Bit/Dot
1 1 | -
SIZE 0-~2: Number of virtual VRAM horizontal characters
SIZE2 | SIZE1 | SIZEO Number of Characters
0 0 0 1
0 0 1 2
0 1 0 4
0 1 1 8
1 0 0 16
1 0 1 32
CHDEND: End character conversion 1

When character conversion 1 is completed,
CHDEND is set to “1” by the Super NES CPU.

1-4-21

SNES DEVELOPMENT MANUAL

4.1.29

4.1.30

DMA SOURCE DEVICE START ADDRESS (SDA)

Access: Super NES CPU/SA-1 CPU Write
Address: **2232H ~ **2234H

Size: 24 bits

Initial value: Nonspecific

D7 D6 D5 D4 D3 D2 D1 DO
DMA Source Device A Start Address (Low)

DSA7 | DSA6 | DSA5 | DSA4 | DSA3 | DSA2 | DSA-1| DSA0
DMA Source Device A Start Address (Middle)

DSA-1E§DSA-11DSA-1 DSA-121DSA-1 l DSA-1cl DSA9 | DSAs
DMA Source Device A Start Address (High)

DSA23 DSA22| DSA21| DSAZOI DSA-1 El DSA-1 4 DSA-171DSA-16

2232H

2233H

2234H

DSAO0-DSA23: DMA source device A start address

Data should be stored to the SDA registers in the order of Low — Middle
— High.

DMA DESTINATION START ADDRESS (DDA)

Access: Super NES CPU/SA-1 CPU Write
Address: **2235H ~ **2237H

Size: 24 bits

Initial value: Nonspecific

D7 D6 D5 D4 D3 D2 D1 DO

DMA Destination Device Start Address (Low)
DDA7 | DDA6 | DDA5 | DDA4 | DDA3 | DDA2 | DDA1 | DDAO

2235H

MA Destination Device Start Address (Middle)
DDA15|DDA14| DDA13|DDA12|DDA11{DDA10| DDA9 | DDAS

2236H

DMA Destination Device Start Address (High)
DDA23] DDA22[DDA21] DDA20| DDA19|DDA18|DDA17|{DDA16

2237H

DDAO-DDA23: DMA destination device start address

When transmitting to SA-1 I-RAM, DMA transfer is initiated by the write to
register 2236H.

When transmitting to BW-RAM, DMA transfer is initiated by the write to
register 2237H.

Data should be stored to the DDA registers in the order of Low — Middle
— High.

1-4-22

SA-1 INTERNAL REGISTER CONFIGURATION

|

4.1.31

4.1.32

DMA TERMINAL COUNTER (DTC)

Access: SA-1 CPU Write
Address: **2238H, **2239H
Size: 16 bits

Initial value: Nonspecific

D7 D6 D5 D4 D3 D2 D1 DO

DMA Terminal Counter (Low)
2238H
T7 T6 T5 T4 T3 T2 T1 T0
DMA Terminal Counter (High)
2239H
T15 | T14 | T183 | T12 | T11 T10 T9 T8
TO-T15: Number of bytes (1 ~ 65535) for DMA transmission
BW-RAM BIT MAP FORMAT (BBF)
Access: SA-1 CPU Write
Address: **223FH
Size: 8 bits
Initial value: OOH
D7 D6 D5 D4 D3 D2 D1 DO
223FH
SEL42] - - -- -- -- -- --
SEL42: BW-RAM bitmap logical space format setting from

the perspective of the SA-1 CPU
0: 16 color mode (4 bits/dot)
1: 4 color mode (2 bits/dot)

1-4-23

SNES DEVELOPMENT MANUAL

4.1.33

Access:

Address:

Size:

BIT MAP REGISTER FILE (BRF)

SA-1 CPU Write

**2240H ~
16 bytes

**224FH

Initial value: Nonspecific

D7

D6

D5

D1

DO

BMO7

BMO6

Bitr
BMO5

map Re |ster F|Ie 0
BM04 BMOS BMO02

BMO1

BMO0O

BM17

BM16

Bitmap Register File 1

BM15

BM14 | BM13 | BM12

BM11

BM10

BM27

BM26

Bitmap Register File 2

BM25

BM24 | BM23 | BM22

BM21

BM20

BM37

BM36

Bit
BM35

BM34 [BM33 | BM32

BM31

BM30

BM47

BM46

Bit
BM45

map Register File 4
BM44 | BM43 | BM42

BM41

BM40

BM57

BM56

Bit
BM55

map Register File 5

T
T
map ReTlster File 3
T
[
|

BM54 | BM53 | BM52

BM51

BM50

BM67

BM66

BM65

Bitmap ReT|ster File 6

BM64 BM63 BM62

BM61

BM60

BM77

BM76

BM75

Bitmap Regilster File 7

BM74 | BM73 | BM72

BM71

BM70

Figure 1-4-4

Bitmap Register Files 0 ~ 7

1-4-24

2240H

2241H

2242H

2243H

2244H

2245H

2246H

2247H

SA-1 INTERNAL REGISTER CONFIGURATION

]
Bitmap Register File 8
gi 2248H
BM87 | BM86 | BM85 | BM84 | BM83 | BM82 | BM81 | BM80
Bitmap Register File 9
gi 2249H
BM97 | BM96 | BM95 | BM94 | BM93 | BM92 | BM91 | BM90
Bitmap Register File A
224AH
BMA7| BMA6 | BMAS | BMA4 | BMA3 | BMA2 | BMA1 [BMAQ
Bitmap Register File B
224BH
BMB7| BMB6 | BMBS5 | BMB4 | BMB3 | BMB2 | BMB1 | BMBO
Bitmap Register File C
j 224CH
BMC7| BMC6| BMC5 | BMC4 [BMC3 | BMC2 | BMC1 | BMCO
Bitmap Register File D
224DH
BMD7| BMD6| BMD5 | BMD4 [BMD3 | BMD2 | BMD1 | BMDO
Bitmap Register File E
224EH
BME7| BME6 | BMES | BME4 | BME3 | BME2 | BME1 | BMEQ
Bitmap Register File F
224FH
BMF7| BMF6 | BMF5 | BMF4 | BMF3 | BMF2 | BMF1 | BMFO
Figure 1-4-5 Bitmap Register Files 8 ~ FF
BRFO ~ BRF7: Buffer 1
BRF8 ~ BRFF: Buffer 2

1-4-25

SNES DEVELOPMENT MANUAL

4.1.34 ARITHMETIC CONTROL (MCNT)

Access: SA-1 CPU Write
Address: **2250H

Size: 8 bits

Initial value: O0H

D7 D6 D5 D4 D3 D2 D1 DO

2250H
0 0 0 0 0 0 ACM | M/D

Types of M/D and ACM arithmetic operations

ACM M/D TYPE OF OPERATION
0 0 Multiplication
0 1 Division

0 Cumulative Sum

NOTE: Store a “1” in ACM to clear the result register during cumulative
sum operations.

1-4-26

SA-1 INTERNAL REGISTER CONFIGURATION

|

4.1.35 ARITHMETIC PARAMETERS: MULTIPLICAND/DIVIDEND (MA)

4.1.36

Access: SA-1 CPU Write
Address: **2251H, **2252H
Size: 16 bits

Initial value: Nonspecific

D7 D6 D5 D4 D3 D2 D1 DO

Arithmetic Parameters: Multiplicand/Dividend (Low)

2251H
MA7 | MA6 | MA5 | MA4 | MA3 | MA2 | MA1 | MAD

Arithmetic Parameters: Multiplicand/Dividend (High)

2252H
MA15] MA14]| MA13| MA12| MA11 | MA10| MA9 | MAS8

MAO-MA15: Multiplicand/Dividend setting (signed 16-bit data)

The data contained in MAO~MA15 is saved even after it is acted upon.
The register does not need to be reset, when used for multiplication.
When used for division, however, the register must be reset each time.

ARITHMETIC PARAMETERS: MULTIPLIER/DIVISOR (MB)

Access: SA-1 CPU Write
Address: **2253H,**2254H
Size: 16 bits

Initial value: Nonspecific

D7 D6 D5 D4 D3 D2 D1 DO

Arithmetic Parameters: Multiplier/Divisor (Low)’
2253H
MB7 | MB6 | MB5 | MB4 | MB3 | MB2 | MB1 | MBO
Arithmetic Parameters: Multiplier/Divisor (High)
2254H
MB15] MB14]| MB13| MB12| MB11 | MB10 | MB9 | MB8

MBO-MB15: Multiplier/divisor setting
» Signed data when used for multiplication
* Unsigned data when used for division

The arithmetic operation is executed following a write to register 2254H.

The multiplier/divisor must be reset each time an operation is performed.

1-4-27

SNES DEVELOPMENT MANUAL

L]
4.1.37 VARIABLE-LENGTH BIT PROCESSING (VBD)
Access: SA-1 CPU Write
Address: **2258H
Size: 8 bits
Initial value: Nonspecific
D7 D6 D5 D4 D3 D2 D1 DO
2258H
HL 0 0 0 VB3 | VB2 | VB1 | VBO
HL: Variable-length data read mode

1: Auto-increment mode
0: Fixed mode

VBO0-VB3: Significant "t length of data previously stored
VB3 | VB2 | VB1 | VBO | Data Length (bits)
0 0 0 0 16
0 0 0 1 1
0 0 1 0 2
0 0 1 | 3
0 1 0 0 4
0 1 0 1 5
0 1 1 0 6
0 1 1 1 7
1 0 0 0 8
1 0 0 1 9
1 0 1 0 10
1 0 1 1 11
1 1 0 0 12
1 1 0 1 13
1 1 1 0 14
| 1 1 1 15

1-4-28

SA-1 INTERNAL REGISTER CONFIGURATION

|

4.1.38 VARIABLE-LENGTH BIT GAME PAK ROM START ADDRESS (VDA)

Access: SA-1 CPU Write
Address: **2259H-**225BH
Size: 24 bits

Initial value: Nonspecific

D7 D6 D5 D4 D3 D2 D1 DO

Variable-Length Bit Game Pak ROM Start Address (Low) ’
2259
VA7 | VA6 | VA5 | VA4 | VA3 | VA2 | VA1 | VAOD
Variable-Length Bit Game Pak ROM Start Address (Middle)
225AH
VA15 VA14T VA13 | VA12 | VA11 | VA10 [VA9 | VA8
Variable-Length Bit Game Pak ROM Start Address (High)
225BH
VA23 | VA22 | VA21 | VA20 | VA19 | VA18 | VA17 | VA16
VAO-VA23: Game Pak ROM variabie-length bit area start ad-

dress setting.

Variable-length bit execution begins with a write to register 225BH.

1-4-29

SNES DEVELOPMENT MANUAL

L

4.1.39 SUPER NES CPU FLAG READ (SFR)

Access: Super NES CPU Read
Address: **2300H
Size: 8 bits

D7 D6 D5 D4 D3 D2 D1 DO

SA-1
CPU CHDMA 2300H
IRQ IVSW IRQ NVSW | CMEG3| CMEG2 | CMEG1 | CMEGO

SA-1 CPU IRQ: IRQ flag from SA-1 CPU
0: No IRQ
1: IRQ

IVSW: Super NES CPU IRQ vector setting
0: Game pak ROM data
1:SIV register data

CHDMA IRQ: Character conversion DMA IRQ flag

0: No IRQ

1: IRQ (character conversion 1 stand-by)
NVSW: Super NES CPU NMI vector setting

0: Game pak ROM data
1: SNV register data

CMEGO-CMEG3: Message port from SA-1 CPU: 0~15

NOTE: Reading this register does not clear its contents.

1-4-30

SA-1 INTERNAL REGISTER CONFIGURATION

4.1.40 SA-1CPU FLAG READ (CFR)

Access: SA-1 CPU Read
Address: **2301H
Size: 8 bits

D7 D6 D5 D4 D3 D2 D1 DO

SNES SNES
CPU Timer | DMA CPU 2301H
IRQ IRQ IRQ NMI | SMEG3]| SMEG2 | SMEG1 | SMEGO

Super NES
CPU IRQ: IRQ flag from Super NES CPU
0: No IRQ
1: IRQ
Timer IRQ: IRQ flag from timer.
0: No IRQ
1: IRQ
DMA IRQ: IRQ flag at the end of DMA
0: No IRQ
1: IRQ (end of DMA)
Super NES
CPU NMI: NMI flag from Super NES CPU
0: No NMI
1: NMI

SMEGO-SMEG3: Message port from Super NES CPU: 0~15

NOTE: Reading this register does not clear its contents.

1-4-31]

SNES DEVELOPMENT MANUAL

L N
4.1.41 H-COUNT READ (HCR)
Access: SA-1 CPU Read
Address: **2302H, **2303H
Size: 16 bits
D7 D6 D5 D4 D3 D2 D1 DO
Timer H-Count Read (Low)
2302H
H7 H6 H5 H4 H3 H2 H1 HO
Timer H-Count Read (High)
2303H
HO-H8:
HV timer:H-count (dots,0~340) read
Linear timer: Lower 9-bit count (0~511) read
All HV counter values are latched when register 2302H is read.
4.1.42 V-COUNT READ (VCR)
Access: SA-1 CPU Read
Address: **2304H, **2305H
Size: 16 bits
D7 D6 D5 D4 D3 D2 D1 DO
Timer V-Count Read {Low)
2304H
V7 V6 V5 V4 V3 V2 V1 VO
Timer V-Count Read (High)
2305H
VO-V8:
HV timer:V-count (lines) read
NTSC, 0~261
PAL, 0~311
Linear timer: Upper 9-bit counter value (0~511)
read

1-4-32

SA-1 INTERNAL REGISTER CONFIGURATION

4.1.43 ARITHMETIC RESULT [PRODUCT/QUOTIENT/ACCUMULATIVE SUM] (MR)
Access: SA-1 CPU Read

Address: **2306H ~ **230AH

Size: 40 bits
D7 D6 D5 D4 D3 D2 D1 DO
Read Arithmetic Result (product/quotient/cumulative sum) WO
D7 D6 D5 D4 D3 D2 D1 DO
Read Arithmetic Result (product/quotient/cumulative sum) W1
D15 | D14 | D13 | D12 | D11 D10 D9 D8
Read Arithmetic Result (product/remainder/cumulative sum) W2
D23 | D22 | D21 D20 | D19 | D18 | D17 | D16
Read Arnthmetic Result (product/remainder/cumulative sum) W3
D31 D30 | D29 | D28 | D27 | D26 | D25 | D24
Read Arithmetic Result (cumulative sum) W4
D39 | D38 | D37 | D36 | D35 | D34 | D33 | D32
D0-D39: Arithmetic result

2306H

2307H

| 2308H

2309H

230AH

Multiplication: 16 (S) x 16 (S) = 32 (S)...D0-D31

Division: 16 (S)

...D16-D31
Cumulative Sum: Y(16 (S) x 16 (S)) = 40 (S)
...D0-D39

1-4-33

16 (U) =16 (S) ...DO-D15

Remainder: 16 (U)

SNES DEVELOPMENT MANUAL

[

4.1.44

4.1.45

ARITHMETIC OVERFLOW FLAG (OF)

Access: SA-1 CPU Read
Address: **230BH

Size: 8 bits
D7 D6 D5 D4 D3 D2 D1 DO
230BH
OF - -- -- -- -- - --
OF: Overflow flag
1: Overflow
0: No overflow
VARIABLE-LENGTH DATA READ PORT (VDP)
Access: SA-1 CPU Read
Address: **230CH, **230DH
Size: 16 bits
D7 D6 D5 D4 D3 D2 D1 DO
Variable-Length Data Read Port (Low)
230CH
VD7 | vD6 | VD5 | VD4 | VD3 | VD2 | VD1 | VDO
Variable-Length Data Read Port (High)
230DH
VD15| VD14 | VD13 | VD12 | VD11 { vD10 | VD9 | VD8
VDO-VD15: The 16-bit data resulting from barrel-shifting the val-

ues stored in the VBD register (**2258H).

1-4-34

SA-1 INTERNAL REGISTER CONFIGURATION

]

4.1.46 VERSION CODE REGISTER (VC)

Access: Super NES CPU Read
Address: **230EH
Size: 8 bits

D7 D6 D5 D4 D3 D2 D1 DO

230EH

VC7 | VC6 | VC5 | VC4 | VC3 | VC2 | vC1 | VCo

VCO ~ VC7: SA-1 Device Version

1-4-35

SNES DEVELOPMENT MANUAL

[

Chapter 5 Multi-Processor Processing

5.1

5.2

MULTI-PROCESSOR SYSTEM

The Super Accelerator System (SAS) is a multi-processor system in which two
MPUs (the Super NES CPU and the SA-1 CPU) operate in parallel. The Super
NES CPU performs as the main processor, controlling execution of the SA-1
CPU. The SA-1 CPU cannot control Super NES CPU operations. This main/sub
relationship is a hardware arrangement. Software can be used to manipulate flags
and interrupts to use the faster SA-1 CPU as the main processor.

STARTING AND STOPPING THE SA-1 CPU

When power is applied to the Super NES control deck or its reset button is
pressed, the SA-1 CPU is placed in its “stop” state. The Super NES CPU manipu-
lates SA-1 internal registers to start and stop the SA-1 CPU as directed by soft-
ware.

5.21 STARTING THE SA-1 CPU

The Super NES CPU sets the SA-1 CPU program start address into the
RV register (2203H, 2204H) and resets the SA-1 CPU RES bit of the
CCNT register (2200H) to “0” to initiate SA-1 CPU processing from the
address set in the RV register.

5.2.2 STOPPING THE SA-1 CPU

When the Super NES CPU sets the SA-1 CPU RES bit of the CCNT reg-
ister (2200H) to “1”, the SA-1 CPU stops processing and is placed in stop
status.

1-5-1

MULTI-PROCESSOR PROCESSING
l I

5.3 MPU HANDSHAKES

Because the Super NES CPU and SA-1 CPU collaborate in processing programs,
the SAS defines the following handshakes between the two MPUs.

INTERRUPTS

The Super NES CPU and SA-1 CPU can each transmit interrupts such as
IRQ and NMI to each other, as listed in the following table.

5.3.1

Interrupt Direction Register Set

type

IRQ S—>C CCNT (2200H), SA-1 CPU IRQ bit = 1

NMI S—>C CCNT (2200H), SA-1 CPU NMI bit = 1

IRQ C—>S SCNT (2209H), Super NES CPU IRQ bit = 1
NMI C—>S Not possible

Table 1-5-1 Types of Interrupts

érFLBIMI interrupt cannot be sent from the SA-1 CPU to the Super NES

The MPU being interrupted identifies the source of the interrupt and
clears the interrupt when the source is the other MPU.

Interrupt Direction Interrupt Clear Register
type Identification
IRQ S—>C CFR (2301H) CIC (220BH)
Super NES CPU IRQ | Super NES CPU
bit IRQCL bit=1
NMI S—C CFR (2301H) CIC (220BH)
Super NES CPU NMI | Super NES CPU NMI
bit CL bit =1]
IRQ C—>S SFR (2300H) SIC (2202H)
SA-1 CPU IRQ bit SA-1 CPU IRQCL bit
=1
Table 1-5-2 Interrupt Identification and Clear

1-5-2

SNES DEVELOPMENT MANUAL

5.3.2

To temporarily block interrupts, they can be masked in an MPU.

Interrupt | Direction Mask Register

Type

IRQ S—C CIE (220AH), Super NES CPU IRQEN bit=0
NMI S—>C CIE (220AH), Super NES CPU NMIEN bit=0
IRQ C—->S SIE (2202H), SA-1 CPU IRQEN bit = 0

Table 1-5-3 Interrupt Mask

A masked interrupt becomes active after the mask is cancelled. To pre-
vent this interrupt when the mask is cancelled, the programmer may use
the interrupt identification registers, described in the table on the previous
page, to identify an interrupt, then clear that interrupt before cancelling
the mask.

MESSAGE

A four-bit message can be sent along with an interrupt signal between the
MPUs, as described in the table below.

Interrupt Direction Register Sending Register Receiving

Type the Message the Message

IRQ S —-C CCNT (2200H), SFR (2300H)
SMEGO0-~3 CMEGO0-~3

NMI S —>C CCNT (2200H) SFR (2300H)
SMEGO0~3 CMEGO0-~3

IRQ C —-S SCNT (2209H) CFR (2301H)
CMEGO0-~3 SMEGO0-~3

Table 1-5-4 Sending and Receiving a Message

1-5-3

MULTI-PROCESSOR PROCESSING

|

5.4

5.5

SHARED MEMORY

Since SA-1 I-RAM can be accessed by both MPUs, a section of the SA-1 I-RAM
can be used as a command exchange window. This window can be used in lieu of
an interrupt to perform a handshake between the two MPUs. It also allows more
command information to be sent than is possible with a “message”, described pre-
viously. The size of shared memory in SA-1 I-RAM can be assigned by each pro-
gram.

The SA-1 has a collision-control circuit for memory access, so that simultaneous
read/write access by both MPUs does not cause any problems. If simultaneous
access does occur, the Super NES CPU has priority access and the SA-1 CPU is
put on hold.

The BW-RAM also has an area assigned to joint access and can be used as
shared memory as well. However, it is generally best to use SA-1 I-RAM due to
the RAM access speed (operating speed) and because BW-RAM cannot be used
during character conversion DMA.

VECTOR SWITCHING

Parts of the Super NES CPU and SA-1 CPU vectors are registers in the SAS. This
permits situation dependant multiple routines to be used. For example, interrupt
processing can be expedited by preparing multiple IRQ routines in advance and
setting the IRQ interrupt destination address in response to game situations.

Vectors which can be specified in registers include the following.

Vector Type Destination Setting Valid/Invalid Selection Bits
Super NES CPU | SNV (220CH, 220DH) | SCNT Super NES CPU
NMI NVSW bit

Super NES CPU | SIV (220EH, 220FH) SCNT Super NES CPU
IRQ IVSW bit

SA-1 CPU reset CRV (2203H, 2204H) | Always valid
SA-1 CPU NMI CNV (2205H, 2206H) | Always valid
SA-1 CPU IRQ CIV (2207H, 2208H) Always valid

Table 1-5-5 Situation Dependant Vectors

When the Super NES CPU register setting vector is set to invalid, the program
jumps to the address indicated in ROM.

1-5-4

SNES DEVELOPMENT MANUAL

r

5.6 SA-1CPU CORE

The SA-1 core CPU is the same 16-bit CPU (65C816) used in the Super NES
CPU and can execute all the Super NES instructions. The differences between
the SA-1 CPU and Super NES CPU cores are as follows:

5.6.1

5.6.2

VECTORS

The reset, NMI, IRQ and other vectors registered in the M-ROM are for
the Super NES CPU. The SA-1 CPU vectors must be set separately. The
SA-1 CPU vectors should be set in the following registers using the Su-
per NES CPU.

Reset vector: RV (2203H, 2204H)
NMI vector: CNV (2205H, 2206H)
IRQ vector: CIV (2207H, 2208H)
Other vectors: Same as the Super NES CPU (M-ROM
data)
SA-1 CPU WAIT

The SA-1 CPU operates at 10.74 MHz, but a wait cycle may be intro-
duced when some commands and functions are executed, or when it is
accessed by the Super NES CPU. This happens when:

1. the following instructions are executed:

RTS, RTI, RTL, JMP (a), JML (a), JMP a, JMP al, JMP (a,x), JSR
(a,x), JSR a, JSL al, BRA cop

2. the destination address of the following commands is odd:
BPL, BMI, BVC, BVS, BRA, BCC, BCS, BNE, BEQ, BRL
3. data is read from Game Pak ROM or BW-RAM.

4.the SA-1 CPU, Super NES CPU or the Super NES CPU’s DMA access
the same device (Game Pak ROM, BW-RAM, or SA-1 I-RAM) simulta-
neously.

5. the BW-RAM write buffer is full when writing to BW-RAM.
6. the source of the SA-1 DMA transmission is Game Pak ROM

1-5-5

MULTI-PROCESSOR PROCESSING

L N
5.7 OPERATION MODES

The SA-1 does not have special registers for setting the operation mode. The Su-
per NES CPU is always in program execution state and controls the SA-1 CPU
operations (start and stop).

The remainder of this chapter introduces representative relationships between the
Super NES CPU and SA-1 CPU operations. They are examples and do not repre-
sent the entire SAS operation modes.

5.71 ACCELERATOR MODE

In the accelerator mode, the SA-1 CPU is used only to handle the high-
load part of the program as subroutines. While the SA-1 CPU is process-
ing, the Super NES CPU waits, in a loop, for the end of this processing.
When the SA-1 CPU finishes processing, it informs the Super NES CPU
by an interrupt, as illustrated below.

PREVIOUS OPERATION OPERATION W/SA-1
SupCeFrDBJES SupéeFr)BlES SA-1 CPU
Pro;ess ““““ :> ‘‘‘‘‘ P ro;:\ess idle
Wait Start Process
-
Process IRQ
C
!
Process e ’ Wait Start
C .
: Process IRQ
Process E

Process
E

Figure 1-5-1 Accelerator Mode

1-5-6

SNES DEVELOPMENT MANUAL

[

5.7.2

In the accelerator mode, the process flow is like a single-thread and it is
easy to avoid programming errors. This mode is suitable for utilizing the
speed of SA-1 without much complexity. On the other hand, it is not very
efficient due to MPU stop and loop time.

PARALLEL PROCESSING MODE

The parallel processing mode is a multi-processing mode in which both
MPUs are operating simultaneously and are synchronized by hand-
shakes. Both MPUs can freely access memory thanks to the SA-1’s auto-
matic collision control.

The handshake between MPUs is achieved by using interrupt signals and
shared memory.

The SA-1 CPU can process the program while the Super NES CPU is
processing the multi-use DMA, as demonstrated below.

PREVIOUS OPERATION OPERATION W/SA-1
SupE:eFr’Ll)IES SU%%BIES SA-1 CPU
Prozess — Prozess Progess
Process
" Process c
B
Process
E

Process

Process
E

Figure 1-5-2 Parallel Processing Mode

1-5-7

MULTI-PROCESSOR PROCESSING

]

In the parallel processing mode the highest processing efficiency can be
achieved, as both MPUs operate without waiting for one anther. Howev-
er, the process flow is complicated and more care must be taken to avoid
programming errors, unsuccessful handshakes, and crashes.

5.7.3 MIXED PROCESSING MODE

In the mixed processing mode, the SA-1 CPU can be used as a Super
NES CPU accelerator during parallel processing in the parallel process-
ing mode. In the SA-1, an operation mode is nothing more than program
architecture, therefore, this type of processing is possible.

PREVIOUS OPERATION OPERATION W/SA-1
Sup&gBlES Su%aI;BIES SA-1 CPU
Process Process
A = A
Part of
Process
C
Wait Start Priée%s
- -4 g e
FE] T
c C B
Process Process
E
Process : X
D : E ; :
Process
E

Figure 1-5-3 Mixed Processing Mode

1-5-8

SNES DEVELOPMENT MANUAL

5.8 OPERATING MODES AND PROCESSING SPEEDS
The operating speed of the SA-1 CPU in each of the SA-1 operating modes is as

follows.
SA-1 SA-1 CPU Memory Super NES | Memory
Operation Operating Used by SA- | CPU Used by
Mode Speed 1 CPU Operations | Super NES
CPU
Accelerator | 10.74MHz Game Pak Loop WRAM
ROM program
SA-1 I-RAM
10.74MHz Game Pak | Multi- Other than
ROM purpose Game Pak
DMA RAM
ﬁf‘ggg‘:'sing 10.74MHz | SA-1 -RAM | Multi- Other than
purpose SA-1 I-RAM
DMA
5.37MHz Game Pak | Multi- Game Pak
ROM purpose ROM
DMA
5.37MHz Game Pak | Normal Game Pak
ROM operations ROM
10.74MHz SA-1 I-RAM | Normal Game Pak
operations ROM
10.74MHz Game Pak Normal WRAM
ROM operations
SA-1 |-RAM
Table 1-5-6 Operating Modes and Processing Speeds

1-5-9

CHARACTER CONVERSION

l

1

Chapter 6 Character Conversion

6.1

6.2

INTRODUCTION TO CHARACTER CONVERSION

The SA-1 contains a function for converting VRAM data stored in virtual bitmap
format on BW-RAM and SA-1 [-RAM to Super NES PPU character format VRAM
data.

Rotation, enlargement, and reduction of screen data and 3-D displays, such as
polygons, are performed readily when the data is stored in bitmap format. Data
compression can also be done more efficiently when the data to be compressed is
stored in bitmap format.

6.1.1 BITMAP FORMAT

“Bitmap format” refers to a data format where one address is assigned to
each pixel (dot) on the screen. The SA-1 uses byte-long addresses. The
effective data length is 2 bits in the 4 color mode and 4 bits in the 16 color
mode. The remaining bits in the byte are ignored.

The Super NES PPU is incapable of directly processing bitmap data. The
SA-1 includes a function which converts bitmap data to Super NES PPU
character formatted data using DMA.

CHARACTER CONVERSION FUNCTIONS

The SA-1 has two character conversion functions for converting bitmap data to
character data (Character Conversion 1 and Character Conversion 2).

6.2.1 CHARACTER CONVERSION 1

Character Conversion 1 sends bitmapped data contained on BW-RAM to
the VRAM of the Super NES PPU and displays it on the screen by simul-
taneously performing the DMA function in the SA-1 and Super NES gen-
eral purpose DMA, as demonstrated below.

Super NES
formatted | SA-1 CHR formatted Purpose | CHR formatted
screen data screen data -——— screen data
BW.RAM DMA SA-11-RAM Internal buffer | DMA VRAM

Figure 1-6-1 Character Conversion 1

1-6-1

SNES DEVELOPMENT MANUAL

[

Character conversion 1 uses the buffer area in SA-1 I-RAM to convert
and transmit data to the VRAM of the Super NES PPU. The buffer can be
a maximum of 128 bytes (256 color mode) or 32 bytes minimum (4 color

CHR formatted

SA-1 I-RAM work area

mode).
6.2.2 CHARACTER CONVERSION 2
Character conversion 2 is used when the bitmap data is in SA-1 I-RAM or
game pak ROM, or when the game pak is configured without BW-RAM,
Bitmap
formatted SA-1 Buffer dat
dat ; ————— screen data
:@rsfh? 4 Transmitted |Registers Converted
SA-1 I-RAM IAW SA-1 automatically
Game Pak ROM CPU . foIIowing
Instructions register write
Figure 1-6-2 Character Conversion 2

1-6-2

CHARACTER CONVERSION

l 1
6.3 BITMAP ACCESS

The bitmap data storage area (virtual VRAM) is normally assigned to BW-RAM.
Bitmap data is compressed (packed) and stored in BW-RAM as illustrated below.

l l l l
4 Color Mode Pixel Pixel Pixel Pixel 4 Pixel/Byte
16 Color Mode Pixel Pixel 2 Pixel/Byte
|
|
256 Color Mode o P"I‘e' o 1 Pixel/Byte

| b7 | b6 | b5 | b4 | b3 | b2 | b1 | b0 |
1 Byte

Figure 1-6-3 Compressed Bitmap Data
6.3.1 BW-RAM IMAGE PROJECTION

Within the SA-1, the BW-RAM image is projected into 6 x H banks in the SA-1
CPU’s memory map. When BW-RAM is accessed in these 6 x H banks, it can be
accessed at one pixel per byte in either the 4 color or 16 color modes.

40H
FFFFH
BW-RAM
Area
Packed
Access
0000H

Figure 1-6-4 Bitmap Image Projection

1-6-3

SNES DEVELOPMENT MANUAL

For 64 Kbit BW-RAM:
BW-RAM Bitmap (16 color) Bitmap (4 color)
40:0000H~40:1FFFH = 60:0000H~60:3FFFH / 60:0000H~60:7FFFH
For 256 Kbit BW-RAM:
BW-RAM Bitmap (16 color) Bitmap (4 color)
40:0000H~40:7FFFH = 60:0000H~60:FFFFH / 60:0000H~61:FFFFH
For 2 Mbit BW-RAM:

BW-RAM Bitmap (16 color) Bitmap (4 color)
40:0000H~43:FFFFH = 60:0000H~67:FFFFH/ 60:0000H~6F:FFFFH

In the 256 color mode, the bitmap data is copied directly on the BW-RAM area.

1-6-4

CHARACTER CONVERSION

]

6.3.2 BW-RAM DATA EXPANSION

The compressed BW-RAM data is expanded sequentially and assigned
from address 60:0000H. This is demonstrated in the figure below. All ar-
eas of BW-RAM are expanded during this operation and no special regis-
ter is provided for designating the expanded area. Therefore, when only a
partial area of BW-RAM is used for virtual VRAM, the bitmap area corre-
sponding to the area assigned as virtual VRAM must be accessed.

16 Color Mode b7 b6 b5 b4 b3 b2 bl b0

40:0000H :’ 60:0000H p3| p2| p1| DO
b7 b6 b5 ba! b3 b2 b1 bO

Ignored

D7 |D6|D5| D4} D3| D2| D1] DO

b7 b6 b5 b4 b3 b2 b1 bo
D7| De| D5f D4

P 60:0001H

Ignored

b7 b6 b5 b4 b3 b2 bl bo

= 60:0000H D1| DO

Ignored

4 Color Mode b7 b6 b5 b4 b3 b2 b1 bO
40:0000H P> 60:0001H o3| b2
b7 b6 b5 b4 b3 b2llb1 bol

Ignored
D7|D6fD5]D4| D3| D2| D1| DO

b7 b6 b5 b4 b3 b2 bl bo
L__ll_[_] el o
B 60:0002H S

Ignored

b7 b6 b5 b4 b3 b2 bt bo

P 60:0003H D7} D6

Ignored

Figure 1-6-5 Bitmap Data Expansion

The color mode of the bitmap access area is set in bit SEL42 of the BBF
register (223FH).
SEL42 = 0: 16 color mode

SEL42 = 1: 4 color mode

1-6-5

SNES DEVELOPMENT MANUAL

L

The bitmap area is configured as follows.

VRAM Horizontal Size (n dots)
[>

T B

8 A X X+1 X+2 x+3 x+n-1
% X+n X+n+1 X+Nn+2 X+N+3 x+2n-1
e | .

o x+2n X+2n+1 X+2n+2 x+2n+3 x+3n-1
S

h =

()]

>

=

é '_ x+(m-1)n | x+(mM-1)n+1 | x+(m-1)n+2 | x+(m-1)n+3 x+mn-1
>

Figure 1-6-6 Memory Addresses for the Bitmap Area

The variable “x” indicates the start address of the bitmap area in virtual
VRAM. The variable “n” is the horizontal size (dots) of VRAM and “m” is
the vertical size (dots) of VRAM. Variable “n” can be specified in bits
SIZEO~2 of the CDMA register (2231H), as demonstrated below. No reg-
ister is provided for specifying vertical size “m”. Vertical size can be set
within the limits of BW-RAM size as a function of internal program logic.
Variable “m” is processed in character units and must be a multiple of
eight.

SIZEO SIZE1 SIZE2 Horizontal Character Number
0 0 0 1 (8 dots)
0 0 1 2 (16 dots)
0 1 0 4 (32 dots)
0 1 1 8 (64 dots)
1 0 0 16 (128 dots)
1 0 1 32 (256 dots)
Table 1-6-1 Horizontal Size of VRAM (CDMA Register)

1-6-6

CHARACTER CONVERSION

=

1

6.4

CHARACTER CONVERSION 1, DETAILED DESCRIPTION

Character conversion 1 is used to convert the bitmap screen data in BW-RAM to

Super NES PPU character formatted VRAM data, with SA-1 DMA and Super NES
general purpose DMA working in parallel. A larger volume of data can be convert-
ed at one time with character conversion 1 than with character conversion 2, due
to efficient usage of both DMAs.

Character conversion 1 requires two characters of memory space in SA-1 |-RAM
for use as buffers (work space). The required I-RAM size is 32 bytes in the 4 color
mode, 64 bytes in the 16 color mode, and 128 bytes in the 256 color mode. Any |-
RAM address can be specified by the user.

Character conversion 1 uses these two buffers to read the data from BW-RAM to
VRAM in parallel. Since the processing speed is determined by the speed of the
Super NES CPU'’s general purpose DMA, the same amount of characters can be
converted as with the Super NES, alone.

BW-RAM SA-1 I-RAM VRAM
Bitmap Data # Cé‘j‘f;zst?r
Conversion
DMA

Character Character
Buffer 2 Data

General
Purpose DMA

After one character is completed.

BW-RAM SA-1 I-RAM VRAM

Character Character
Buffer 1 Data

General
Bitmap Data # Cé\gf;gcrztg r

Purpose DMA
Conversion

DMA

Figure 1-6-7 Character Conversion Buffers

1-6-7

SNES DEVELOPMENT MANUAL

Ex

6.5

CHARACTER CONVERSION 1 PROGRAMMING PROCEDURE

When character conversion 1 is used, the user must carefully coordinate register
settings in the Super NES CPU and SA-1 CPU. The following procedure is provid-
ed to aid the user in coordinating these settings.

STEP 1. Set DCNT (2230H) using the SA-1 CPU.
CDEN bit = 1 (character conversion enable)
CDSEL =1 (BW-RAM to SA-1 I-RAM transmission)

NOTE: The registers indicated in the following steps are set using the
Super NES CPU.

STEP 2. Specify the SA-1 DMA transmission source address using the Super
NES CPU. :

Store the transmission source address (BW-RAM) in SDA
(2232H~2234H).

A specific number of low bit of the address must be set to “0”,
as a function of the color mode and the number of horizontal
characters set in SIZE0O~2 of CDMA (2231H). The specific
number of “0” bits can be determined from the table below.

Color Mode [4[474[4]44[16[16[16[16[16[16[256]256[256[256[256]256

umber of

Horizontal 112|4(8[16[32/1(214|8116/32/ 1 | 2 |4 | 8 |16(32
Characters
Zero Bits 4/5(/6(7(8|9|5(6|7[8]91106 |7 |89 [10]11

Table 1-6-2 Number of Zero Bits in BW-RAM

STEP 3. Set CDMA (2231H) using the Super NES CPU.
Store the color mode (4, 16, or256) in CB0 and CB1.
Store the number of virtual VRAM horizontal characters in
SIZEO-~2.
STEP 4. Specify the SA-1 I-RAM address for the buffers as the transmission
destination.

Store the buffer address in DDA (2235H and 2236H).

NOTE: It is not necessary to set 2237H because I-RAM is specified.

The lowest 5 bits of the I-RAM address must all be “0” for 4 col-
or mode. The lowest 6 bits of the I-RAM address must be “0”
for 16 color mode. And, the lowest 7 bits of the I-RAM address
must be “0” for 256 color mode.

1-6-8

CHARACTER CONVERSION

STEP 5. Wait for the IRQ (CHRIRQ) generated from SA-1 to the Super NES
CPU.

The Super NES CPU waits for the IRQ and verifies that the
CHRDMA IRQ bit of the SFR register (2300H) = 1 (character
conversion 1 DMA standby). IRQ is generated for some other
reason when CHRDMA |IRQ = 0.

STEP 6. Transmit the character data in SA-1 I-RAM to VRAM.

Character data which has been converted by the Super NES
CPU's general purpose DMA is transmitted to VRAM. Set the
general purpose DMA source address to the start address of
the virtual VRAM in BW-RAM.

STEP 7. Use the Super NES CPU to notify the SA-1 that the conversion is
complete.

Set bit CHDEND of the CDMA register (2231H) to “1” to indi-
cate that one cycle of character conversion 1 has been com-
pleted and return control of register access to the SA-1 CPU.

When necessary, use an IRQ or SA-1 I-RAM to notify the SA-1 CPU of the end of -
character conversion.

Using the above procedure, the SA-1 internal character conversion circuit con-
verts characters in order based upon the request from the Super NES CPU’s
DMA.

The SA-1 CPU can return to program processing after STEP 1 has been per-
formed, however, it must wait during any simultaneous access to BW-RAM or SAl
I-RAM as DMA has priority.

Although CDMA, DDA, and SDA are SA-1 CPU registers, they are set by the Su-
per NES CPU when using character conversion 1. The user should not access
BW-RAM from the Super NES CPU during these operations. SA-1 I-RAM can be
accessed by the user through the Super NES CPU, so flags can be changed with-
in the SA-1 CPU.

1-6-9

SNES DEVELOPMENT MANUAL

e

6.6

CHARACTER CONVERSION 2, DETAILED DESCRIPTION

Character conversion 2 performs character conversion by writing bitmap data to
the SA-1 registers according to the SA-1 CPU’s program. Because the transmis-
sion is controlled by the SA-1 CPU’s program, the memory for bitmap data expan-
sion can be set up more freely than when using character conversion 1. Also,
when the game pak configuration does not include BW-RAM, character conver-
sion 2 is the only means of character conversion.

The bitmap data when using character conversion 2 is one pixel/byte (unpacked).
As previously described, packed data cannot be converted. Therefore, bits b7 ~
b2 of the data are invalid in the 4 color mode. Similarly, b7 ~ b4 are invalid in the
16 color mode. All bits are valid in the 256 color mode.

The table below shows the actual data in memory. When the bitmap access func-
tion is used with character conversion 1, one pixel/byte access is possible.

Bitmap Data Format

4 Color Mode 16 Color Mode

Character Conversion 1 4 Pixel/Byte 2 Pixel/Byte
Character Conversion 2 1 Pixel/Byte 1 Pixel/Byte
Table 1-6-3 Character Conversion and Data Format

Character conversion 2 also requires buffers for two characters in SA-1 I-RAM,
similar to character conversion 1. The bitmap data written to the SA-1 registers by
the SA-1 CPU is converted as written and generated as character data in the buff-
er area in SA-1 I-RAM. Character conversion is performed using the two SA-1
buffers alternately. When the conversion of data contained in buffer 1 is complet-
ed, conversion begins on the data contained in buffer 2. When this conversion is
completed, new data contained in buffer 1 is converted. The Super NES CPU
reads the data from the buffer in the SA-1 I-RAM at the end of each conversion
using its general purpose DMA.

1-6-10

CHARACTER CONVERSION

2]

6.7

CHARACTER CONVERSION 2 PROGRAMMING PROCEDURE

The following procedure is provided to aid the user in executing character conver-

sion 2.

STEP 1.

STEP 2.

STEP 3.

STEP 4.

STEP 5.

STEP 6.

Set DCNT (2230H) using the SA-1 CPU.
DMAEN = 1 (DMA enable)
CDEN = 1 (character conversion DMA)
CDSEL =0 (SA-1 CPU to SA-1 I-RAM write)
No other bits need to be set.

Store the color mode in CDMA (2231H) using the SA-1 CPU.
The color mode is set using bits CB0 and CB1 (4, 16, or 256
color modes). Bits SIZEO~2 need not be set.
Specify the SA-1 I-RAM transmission destination address using the
SA-1 CPU.
Store the I-RAM buffer address in DDA (2235H and 2236H).

The lowest 5 bits of the I-RAM address must be set to all zeros
for 4 color mode. The lowest 6 bits must be zero for 16 color
mode. The lowest 7 bits must be zero for 256 color mode.

Write the bitmap data in the conversion register using the SA-1 CPU.

The data must be written 4 times in succession (64 pixels = 1
character of data) to BRF (2240H~224FH).

The 4 write operations should be performed in the following or-
der.

BRFO—»152—-... F5001-5... oF

Character conversion DMA will begin automatically, following
each 8 pixel write operation and generate the characters in I-
RAM.

Notify the Super NES CPU that character conversion is complete.

Notify the Super NES CPU using an interrupt or SA-1 I-RAM
when a character has been completed.

The Super NES CPU transmits the character data to VRAM or
WRAM using general purpose DMA or a program.
Repeat STEP 4 and 5 to continue character conversion.

To continue to convert characters, write 64 pixels in succes-
sion. The character data is created using DMA transmission in
the other SA-1 I-RAM buffer.

1-6-11

SNES DEVELOPMENT MANUAL

—

STEP 7. Indicate when character conversion is over.

Reset bit DMAEN of the DCNT register (2230H) to “0”. This
ends one cycle of character conversion 2.

During these operations, other SA-1 DMA functions cannot be performed. The
Super NES general purpose DMA may be used for other functions.

1-6-12

ARITHMETIC FUNCTION

Chapter 7 Arithmetic Function

7.1

TYPES OF ARITHMETIC OPERATIONS

The SA-1 has an arithmetic circuit for high speed processing of arithmetic opera-
tions. This is in addition to the arithmentc circuit installed in the Super NES PPU.
The SA-1 arithmentc circuit runs faster and can run concurrently with the Super
NES CPU. The SA-1 arithmetic circuit performs the following three types of arith-
metic functions.

1. MULTIPLICATION

Multiplicand Multiplier Result

16 bits (S) X 16 bits (S) = 32 bits (S)
2. DIVISION

Dividend Divisor Result

16 bits (S) + 16 bits (U)

16 bits (S)
16 bits (U) Remainder

3. CUMULATIVE SUM

Multiplicand Multiplier Result
2(16 bits (S) X 16 bits (S)) = 40 bits (S)

Note: (S) indicates signed data and (U) indicates unsigned data.

The type of arithmetic operation is specified in the arithmetic operation control
register (**2250H) using the SA-1 CPU. The user should choose between ACM
(d1) for cumulative sum operations and M/D (d0) for multiplication or division op-
erations. The required number of cycles for each operation are shown below.

Arithmetic
Operation ACM | M/D | Number of Cycles
Multiplication 0 0 5
Division 0 1
Accumulative 1 -
Table 1-7-1 Arithmetic Operations Settings and Cycles

The number of cycles is calculated based upon 10.74 MHz per cycle.

1-7-1

SNES DEVELOPMENT MANUAL

7.2

7.3

MULTIPLICATION

Multiplication operations are carried out as follows.

1.

Set MCNT (2250H)
ACM=0, M/D=0
Set the arithmetic parameters.

Store the multiplicand in MA (2251H and 2252H).
Store the multiplier in MB (2253H and 2254H).

Read the result after 5 cycles.

The arithmetic result is stored in WO~W3 of MR (2306H~2309H).
WO is the lowest byte and W3 the highest.

The multiplicand is saved in memory following the operation, while the multiplier is

not.

DIVISION

Division operations are carried out as follows.

1.

Set MCNT (2250H)
ACM=0, M/D=1
Set the arithmetic parameters.

Store the dividend in MA (2251H and 2252H).
Store the divisor in MB (2253H and 2254H).

Read the result after 5 cycles.

The arithmetic result is stored in WO and W1 of MR (2306H and 2307H).
The remainder is stored in W2 and W3 of MR (2306H and 2307H).
W0 and W2 are the low bytes, while W1 and W3 are the high bytes.

Neither the dividend nor the divisor is saved in memory.

The SA-1 does not detect “divide by zero” errors. The product and remainder for
division by zero will be “0”. Special attention is required to the sign of the remain-
der in division when using negative numbers.

1-7-2

ARITHMETIC FUNCTION

{

!

7.4 CUMULATIVE SUM

Cumulative sum operations are carried out as follows.

1.

Set MCNT (2250H)

ACM=1
When the ACM bit is set (1) the cumulative result is cleared to “0”.

Set the arithmetic parameters.

Store the multiplicand in MA (2251H and 2252H).
Store the multiplier in MB (2253H and 2254H).

Reset the parameters after 6 cycles.
Repeat this step until the operation is completed.
Read the cumulative result.

The arithmetic result is stored in WO~W3 of MR (2306H~2309H).
WO is the lowest byte and W3 the highest.

The multiplicand is saved in memory following the operation, while the multiplier is

not.

The OF bit in the OF register (230BH) is set to “1” when the cumulative result ex-
ceeds 40 bits.

1-7-3

SNES DEVELOPMENT MANUAL

Chapter 8 Variable-Length Bit Processing

8.1 READING VARIABLE-LENGTH DATA

The SA-1 variable-length bit processing function consists of a barrel shift circuit
which treats the entire game pak ROM as a stream (string) of bits which are se-
quentially read in 1 ~ 16 bit lengths. This allows the SA-1 to process data of vari-
able lengths without having to shift the data to byte boundaries, resulting in higher
processing speed.

The SA-1 variable-length bit processing function consists only of a barrel shift
function. The function supports, but does not perform data compression or expan-
sion. These processes must be performed as a part of each program.

The function is configured in this way to allow the programmer to select the best
compression algorithm for each piece of software, in order to achieve the optimal
processing speed-compression rate combination.

The SA-1 variable-length bit processing function includes two data read modes,
the Fixed Mode and the Auto-increment Mode.

The data read mode is specified in the HL bit of the VBD register (2258H).

HL=0: Fixed Mode
HL=1: Auto-increment Mode

1-8-1

VARIABLE-LENGTH BIT PROCESSING

=

8.2

FIXED MODE

In the Fixed Mode, the data stored in the variable-length data port will be read
over and over until the number of bits to be barrel shifted is reached. The shift is
carried out when the amount of the shift is written to the VBD register (2258H).
The Fixed Mode is used to read data which is formatted so that the valid bit length
is known only after the data is read. Variable-length data is processed as follows
in the Fixed Mode.

Store the start address of
the variable-length data.

*l

Read data from the
variable-length data port.

'

END?

Yes

No

Specify amount of
barrel shift..

RETURN

Figure 1-8-1 Fixed Mode Process Flow Diagram

1-8-2

SNES DEVELOPMENT MANUAL

8.3 AUTO-INCREMENT MODE

In the Auto-increment Mode, the amount of the barrel shift is specified in advance.
Data is shifted automatically following the data read and the next data is placed
on standby.

The Auto-increment Mode is used when the valid bit length of data is known in ad-
vance or when data of the same length is to be repeated. Variable-length data is
processed as follows in the Auto-increment Mode.

Store the start address of
the variable-length data.

Specify the number of
bits to be barrel-shifted.

3

Read data from the
variable-length data port.

'

Specify amount of
barrel shift.. y

RETURN

Figure 1-8-2 Auto-increment Mode Process Flow Diagram

1-8-3

VARIABLE-LENGTH BIT PROCESSING

8.4 VARIABLE-LENGTH DATA PROCESSING SETTINGS

Specify the number of bits to be shifted and parameters for the SA-1 variable-
length data read in the following registers.

STEP 1. Set variable-length data start address.

Store the start address of the variable-length bit stream in the
VDA register (2259H~225BH).

STEP 2. Perform variable-length data read.

Read variable-length data from the VDP register (230CH and
230DH).

An LSB-justified 16 bit block of data is read from the start of the

remaining bit stream.

STEP 3. Set the amount of the barrel shift.
Store the amount of the barrel shift in bits VB0O~VB3 of the VBD

register (2258H).

VB3 VB2 VB1 VB0 Significant Bit Length

0 0 0 0 16
0 0 0 1 1

0 0 1 0 2
0 0 1 1 3
0 1 0 0 4
0 1 0 1 5
0 1 1 0 6
0 1 1 1 7
1 0 0 0 8
1 0 0 1 9
1 0 1 0 10
1 0 1 1 11
1 1 0 0 12
1 1 0 1 13
1 1 1 0 14
1 1 1 1 15

Table 1-8-1 Amount of Barrel Shift

1-8-4

SNES DEVELOPMENT MANUAL

E,

The barrel shift is carried out from MSB to LSB and the next data is read into the
vacant MSB. This flow is demonstrated in the following illustration.

MSB LSB

Read data from
NN \ the VDP.

\

Set the VBD
to 4.

\

Read data from
the VDP.

Next Data | | VDP Output Data |

Figure 1-8-3 Barrel Shift Process

When specifying the amount of barrel shift, the number of bits from the word
boundary is specified. For example, when 2-bit blocks of data are used:;

set VB3~0 to 0010 (2) for the first shift,
set VB3~0 to 0100 (4) for the second shift, and
set VB3~0 to 0110 (6) for the third shift.

Note that the data set in the VB bits is not the number of bits to be discarded, but
rather the number of unnecessary bits counting from the word boundary.

1-8-5

DMA
I : |

Chapter 9 DMA

9.1 TYPES OF DMA

The SA-1 internal DMA function transfers data between game pak ROM, BW-
RAM, and SA-1 I-RAM. SA-1 internal DMA can be operated independent of the
Super NES CPU'’s general purpose DMA and H-DMA. Even when both DMAs ac-
cess the same memory at the same time, no problems arise because memory ac-
cess is exclusive.

SA-1 internal DMA has two basic operation modes. The Normal DMA Mode is
used to transfer data between memories, while the Character Conversion DMA
Mode is used to transmit data while converting from bitmap format to character
format. This chapter describes the Normal DMA Mode. Refer to the previous
chapter, “Character Conversion”, for details concerning the Character Conversion
DMA Mode.

[Game Pak ROMF——L2MA____ . [BW-RAM |

| Game Pak ROM} DMA »[SA-1-RAM]
[SA-11-RAM DMA . /BW-RAM |

BWRAW | DWA

Figure 1-9-1 Normal DMA

Instruction CHR DMA
SA-1 CP Conversion W SA-1 |-RAM
Conversion
DMA CHR |
BWRAM | | Comversion [Seneral »[SA-T FRAM
[BW-RAM Character | Conversion | Purpose SA-1I-RAM
Conversion DMA (Super NES CPU)

Figure 1-9-2 Character Conversion DMA

1-9-1

SNES DEVELOPMENT MANUAL

9.2 NORMAL DMA OPERATION

All Normal DMA is started from the SA-1 CPU. The DMA-related registers
(2230H~2239H) are used to start DMA, as described in the following procedure.

STEP 1. Set the DCNT register (**2230H).
Store the transmission source device in bits SD0 and SD1.
Store the transmission destination device in bit DD.

NOTE: The same device cannot be used for source and destination.
Source Device Destination Device
SD1 | SDO | Device DD | Device
0 Game Pak ROM 0 SA-1 |-RAM
0 1 BW-RAM 1 BW-RAM
1 0 SA-1 I-RAM

Store the transmission mode in bit CDEN.

CDEN=0: Normal DMA

CDEN=1: Character Conversion DMA
Set DPRIO (d6) to assign priority between SA-1 CPU and
DMA.
DPrio=0: SA-1 CPU priority (Instructions can be exe-
cuted during transmission)
DPrio=1: DMA priority (SA-1 CPU waits during DMA)

NOTE: The DPrio setting is only valid during Normal DMA between BW-
RAM and SA-1 I-RAM.

Set DMAEN to enable or disable DMA.

DMAEN=0: = DMA disable (DMA is not used)
DMAEN=1: DMA enable (Use DMA, clear parameters)

When setting the DMA parameters, first set DMAEN=1 from
the SA-1 CPU and then set the other parameters. Set
DMAEN=0 after the DMA has been completed.

1-9-2

DMA

STEP 2. Specify the start address of the transmission source.

Store the transmission source start address in the SDA register
(2232H~2234H). The bit length varies according to the source
device.

Source
Device

Bit Number Setting | Register

Game Pak 24 bits

ROM
BW-RAM
SA-1 I-RAM

**2232H, 2233H, 2234H

18 bits
11 bits

**2232H, 2233H, 2234H
**2232H, 2233H

Table 1-9-1 Source Device Settings

When transmitting from game pak ROM, start from the even
address. When transmitting from BW-RAM, transmit from bank
40H~43H. No transmissions can be sent from a bitmap access
area.

STEP 3. Set the number of bytes for transmission.

Store the number of bytes for transmission in the DTC register
(2238H and 2239H). The value set in DTC is transferred to the
internal counter in the DMA circuit (terminal counter). The DTC
range is from 1~65535 bytes.

STEP 4. Specify the transmission destination start address.

Store the transmission destination start address in the DDA
register (2235H~2237H). The bit length varies according to the
destination device.

Destination
Device

Bit Number
Setting

Register

Start
Trigger

BW-RAM

18 bits

**2235H, 2236H, 2237H

**2237H

SA-1 I-RAM

11 bits

**2235H, 2236H

**2236H

Table 1-9-2

Destination Device Settings

When transferring data to BW-RAM, send the data to banks
40H~43H. Data cannot be sent to the bitmap access area. The
DMA circuit begins the transmission after the trigger address
has been written.

1-9-3

SNES DEVELOPMENT MANUAL
L v]

Normal DMA transmission ends when the internal terminal counter reaches 0. Af-
ter normal DMA ends, an IRQ is generated from the DMA circuit to the SA-1 CPU
to set the DMAIRQ flag in the CFR register (2301H) to “1”.

9.3 DMA TRANSMISSION SPEED

The transmission speeds for Normal DMA are as follows.:

Type of DMA Frequency
Game Pak ROM to SA-1 |-RAM 10.74 MHz
Game Pak ROM to BW-RAM 5.37 MHz
BW-RAM to SA-1 I-RAM 5.37 MHz
SA-1 I-RAM to BW-RAM 5.37 MHz
Table 1-9-3 DMA Transmission Speed

When the Super NES CPU’s general purpose DMA or H-DMA generates an ac- ..
cess during the SA-1’s internal DMA transmission, the SA-1 internal DMA is put in
the “wait” state. Hence, the Super NES CPU’s DMA has priority.

1-9-4

INTRODUCTION TO SUPER FX

J

Chapter 1

Introduction to Super FX

The Super FX is a Graphic Support processing Unit (GSU) designed to greatly improve
the Super NES graphics and mathematical functions through the use of the following
special features.

1.1 FEATURES

1.1.1

1.1.2

1.1.3

1.1.4

1.1.5

1.1.6

1.1.7

1.1.8

RISC-LIKE INSTRUCTIONS

Instructions which are utilized often consist of only one byte and are exe-
cuted in one cycle in an instruction cache.

HIGH SPEED CLOCK OPERATION

The current version of the Super FX operates at a clock speed of
10.74MHz. This is six times as fast as the Super NES CPU.

BUILT-IN INSTRUCTION CACHE

A 512-byte cache RAM is installed in order to perform the instructions at
high speed. (Refer to “Cache RAM”.)

SUPER NES CPU’S MEMORY MAY BE USED

The Super FX uses game pak ROM and RAM which is currently used by
the Super NES CPU. (Refer to “Memory Mapping”.)

INDEPENDENT ROM AND RAM BUSES

The Super FX can access game pak ROM and RAM in parallel. Program
processing speed is maximized, as buffers are provided to read from
ROM and write to RAM. (Refer to “Program Execution”.)

PARALLEL OPERATIONS WITH SUPER NES CPU

The Super NES CPU and Super FX may execute processing in parallel.
Thus, high speed operations can be performed.

GRAPHICS FUNCTION

A fast plot process can be performed by specifying a coordinate corre-
sponding with the Super NES PPU format. (Refer to “Bitmap Emulation”,
under “Super FX Special Functions”.)

PIPELINE PROCESSING

Pipeline processing reduces the number of processing cycles and en-
ables high speed operation. (Refer to “Pipeline Processing”, under “In-
struction Set General Description”.)

2-1-1

SNES DEVELOPMENT MANUAL
E ‘ . =
1.2 SPECIAL CONVENTIONS

Unless otherwise specified, addresses will be written with a 2 digit hexadecimal

bank number and a 4 digit hexadecimal address separated by a colon (:). The fol-
lowing example demonstrates this convention.

3F:0000H

In this example “3F” represents the bank number, while “0000” represents the
hexadecimal address.

2-1-2

INTRODUCTION TO SUPER FX

]

1.3

SYSTEM CONFIGURATION

The GSU is installed on each game pak with ROM and RAM as demonstrated be-
low. The Super NES CPU and the GSU share game pak ROM and RAM. Addi-
tional ROM for the Super NES CPU and back-up RAM may also be installed.

L L L L L L LLLLLLLLLLLILIILLIIIIIIIIIVIIIVIIIIIIIIIIIIIIIIIIIIIDL

<\

’
Y /
/ SUPER NES E
/ AK
: Game Pak GAME P E
/ ROM /
’
/ A D /
A Rp A /
4 D T /
/ R A /
/ /
/ /
/ SUPER NES :
; Back-up RAEA_J CPU ROM /
/ /
¢ /
¢ /
¢ /
/ /
/ /
/ /
/ _ _ 4
"””””’A"””’ ’I’II””’I’l””’l””””l””’I”’Il
”””’I)ra'ﬂlA,’” L L L L L OOV IO POV IV IVIIIIIVIIIIIPIIPIIPIPDA

g D SUPER NES

T g CONTROL DECK

SUPER

NES CPU

AN SS SN SN SN SNSNSNSNSNSNSNSNSSESESSSS
ASS S NS SN SN SN SS SN SSSSSSSESSSNN

Fi‘gure 2-1-1 Super FX System Configuration

2-1-3

SNES DEVELOPMENT MANUAL

L
1.4 SYSTEM OPERATION

Although the Super NES CPU and GSU share game pak ROM and RAM, the pro-
cessors can not access either simultaneously. The GSU has a flag, controlled by
the Super NES CPU program, which determines whether the CPU or GSU have
access to game pak ROM and/or RAM. This is demonstrated in the following fig-
ure.

(Switch) Control

SUPER NES
CPU

]

]

]

GSU |
Instruction '
I

]

]

]

]

! [}
J]
' |W-RAM | |
: . 2 Bus usage for Game Pak
' yf k ROM and RAM may be
IIBACK-UP| | | GAME || switched independently
1| RAM ' | PAK 1 from one another.
| 1 _ROM |
! /
|SNES || [GAME] !
| NES | | PAK |
[ROM | ' :
A 3 +|_RAM ||
|

Figure 2-1-2 Game Pak ROM/RAM Bus Diagram

When using the GSU, the program must be written and executed with these

points in mind. The following example demonstrates recommended usage of the
GSU.

1.5 EXAMPLE OF USAGE

1.5.1 RESET SUPER NES

When the Super NES is reset, the GSU is also reset. In this condition the
game pak ROM and RAM busses are connected to the Super NES CPU.
The program stored in game pak ROM is processed by the Super NES
CPU. The GSU is idle during this period.

2-1-4

INTRODUCTION TO SUPER FX

1.5.2

1.5.3

1.5.4

1.5.5

1.5.6

1.5.7

WRAM

The Super NES CPU is used to move the program from game pak ROM
to the work RAM (WRAM) mounted within the Super NES Control Deck.
The Super NES CPU may then be operated by this WRAM program.

ACTIVATION OF GSU

The GSU flag is set by the Super NES CPU. This allows the GSU to pro-
cess instructions stored in game pak ROM and store results in game pak
RAM.

GSU STOP COMMAND

When the GSU completes the desired processing, a stop command is ex-
ecuted. The GSU stops processing and generates an interrupt to the Su-
per NES CPU. This notifies the Super NES CPU that the GSU has
completed its processing.

GSU DISCONNECT

When the GSU stops, game pak ROM and RAM busses are again con-
nected to the Super NES CPU. This permits the Super NES CPU to pro-
cess the results of the GSU’s computations.

EXAMPLE SUMMARY

This process may have been used, for example, to produce game video
data. These programming steps are then repeated, as necessary, to ac-
complish the programmer’s desired result.

CURRENT CONSUMPTION

A game pak which contains the Super FX is required to have a built-in
safety program to prevent it from operating in excess of the maximum
current rating of the AC Adapter. For example, a game pak which con-
tains the Super FX can not be used with Multi Player 5 because this
would exceed the maximum current rating. A program must be included
within the game pak which will check accessory IDs and activate the Su-
per FX only if an acceptable accessory is connected. If an accessory ID
other than those acceptable is detected, a warning message must be dis-
played and the Super FX must halt.

Some accessories may be used, depending upon the size of ROM and
RAM included in the game pak and the Super FX operating frequency.
The user should contact Nintendo’s Licensee Support Group for assis-
tance, in advance, if use of an accessory other than the standard control-
ler is desired.

SNES DEVELOPMENT MANUAL

Chapter 2

2.1

GSU FUNCTIONAL BLOCK DIAGRAM

The GSU is comprised of the following 6 functional blocks. These are demonstrat-
ed in the figure below.

GSU FUNCTIONAL OPERATION

General Registers

16 BIT X 16

<

| 4

ultiplier

S
U
P
E GAME
R INSTRUCTION PAK
g CONTROLLER Coﬁﬁm,e,
S PLOT ||
TO J
SUPER c CACHE
NES P | PIPELINE
CPU u DECODER
BUS |
N
T
E
R GAME
F PAK
A ROM
C Controller
Figure 2-2-1 GSU Functional Block Diagram

2-2-1

GSU FUNCTIONAL OPERATION

|

2.1.1

2.1.2

2.1.3

21.4

SUPER NES CPU INTERFACE
The Super NES CPU Interface performs the following functions:

1. Controls data transfer between the Super NES CPU, game
pak ROM/RAM, and the general registers.

2. Controls instruction data transfer between Super NES CPU
and the cache.

3. Controls activation of GSU.
4. Controls interrupt to Super NES CPU.

INSTRUCTION CONTROLLER

This controls fetch instructions, decode instructions, and various other
blocks based upon these instructions; loaded from game pak ROM,
game pak RAM, or the cache.

Note: Pipeline and cache circuits enable high speed execution of instruc-
tions.

GAME PAK ROM CONTROLLER

The game pak ROM controller performs the following functions:

1. Controls data transfer between the Super NES CPU and
game pak ROM.

2. Loads instructions from game pak ROM to the GSU.

3. Transfers data from the game pak ROM to the GSU intemal
registers.

Note: Data transfer from the game pak ROM to the GSU is accom-
plished using a ROM buffering system. This enables instructions
from the game pak RAM and cache to be executed and operated
in an array.

GAME PAK RAM CONTROLLER

The game pak RAM controller functions as follows:

1. Controls data transfer between the Super NES CPU and
game pak RAM.

2. Loads instructions from game pak RAM to the GSU.

3. Transfers data between game pak RAM and GSU internal
registers.

4. Bitmap emulation.

Note: Data transfer from the game pak RAM to the GSU is accomplished
using a RAM buffering system. This enables instructions from the
game pak ROM and cache to be executed and operated in an ar-
ray. :

2-2-2

SNES DEVELOPMENT MANUAL

2.1.5 GENERAL REGISTERS

These registers are used for general operations and data transfer.
Note: The GSU is equipped with sixteen, 16-bit registers. All GSU opera-

tions are performed using the general registers.

2.1.6 OPERATOR

The Operator executes 16-bit arithmetic operations and logical opera-

tions.

2.2 REGISTERS

A list of GSU internal registers is provided in the table below.

FUNCTIONAL GROUP

REGISTER NAME

General Registers
Group

General Register RO ~ R13
ROM Address Pointer R4
Program Counter R15

Status/Flag Register SFR

Registers Related to
Memory Operations

Program Bank Register PBR
Game Pak ROM

Bank Register ROMBR
Game Pak RAM
Bank Register RAMBR

Cache Base Register CBR

Plot Related Registers

Screen Base Register SCBR
Screen Mode Register SCMR
Color Register COLR
Plot Option Register POR

Other Registers

Back-up RAM Register BRAMR
Version Code Register VCR
CONFIG Register CFGR
Clock Select Register ~ CLSR

Table 2-2-1 Registers Listed by Functional Group
221 GENERAL REGISTERS

2211 RO0~R13

These registers are used to execute various instructions as GSU
General Registers during GSU operation. There are special
functions available for some instructions (refer to “GSU Internal
Register Configuration”). These can also be accessed by the Su-

per NES CPU when the GSU is in the idle state.

2-2-3

GSU FUNCTIONAL OPERATION

=

222

2.2.3

2212

2.2.1.3

2214

R14

This register functions as a data pointer for game pak ROM dur-
ing GSU operation. Data addressed in this register is automati-
cally stored in the ROM buffer. As with RO ~ R13, this register
may be used as a GSU general register. It can also be accessed
by the Super NES CPU when the GSU is in the idle state.

R15

This register is the GSU Program Counter. If an address is writ-
ten to this register from the Super NES CPU, while the GSU is
idle, the GSU will be activated.

STATUS/FLAG REGISTER (SFR)

The “flags” in this register indicate GSU status and operation re-
sults. This register can be referenced by the Super NES CPU
even while the GSU is operating.

REGISTERS RELATED TO MEMORY OPERATIONS

2.2.2.1

2222

2223

2224

PROGRAM BANK REGISTER (PBR)

This register specifies the memory bank when an instruction is
read. Its value must be assigned from the Super NES CPU be-
fore the GSU is activated. This is changed during GSU operation
using the LUMP instruction.

GAME PAK ROM BANK REGISTER (ROMBR)

This register specifies the game pak ROM bank when data are
read from the game pak ROM using the ROM buffering system.
Its value is changed during GSU operation using the ROMB in-
struction.

GAME PAK RAM BANK REGISTER (RAMBR)

This register specifies the game pak RAM bank when data are
read/written from/to the game pak RAM. Its value is changed
during GSU operation using the RAMB instruction.

CACHE BASE REGISTER (CBR)

This register specifies the starting address when loading data
from the game pak ROM or RAM to the cache RAM. The value
for CBR is updated during GSU operation whenever the CACHE
instruction or LIMP instruction is executed.

PLOT RELATED REGISTERS

2.2.3.1

SCREEN BASE REGISTER (SCBR)

This register is used to specify the start address in the character
data storage area. Its value must be assigned from the Super
NES CPU prior to activating the GSU.

2-2-4

SNES DEVELOPMENT MANUAL
£]

2.2.3.2 SCREEN MODE REGISTER (SCMR)

This register assigns the color and screen mode when PLOT
processing is performed. Its value must be assigned from the
Super NES CPU prior to activating the GSU.

2.2.3.3 COLOR REGISTER (COLR)
This register specifies the color when PLOT processing is per-
formed. Its value is changed during GSU operation using the

COLOR instruction or GETC instruction. It cannot be accessed
from the Super NES CPU.

2.2.3.4 PLOT OPTION REGISTER (POR)

This register assigns the mode when executing the COLOR,
GETC, or PLOT instructions. When these instructions are used,
the value of the plot option register must be assigned before exe-
cution, using the CMODE instruction.

224 OTHER REGISTERS

2.2.41 B-RAM REGISTER (BRAMR)

Back-up RAM enable/disable can be controlled by this register.
The register’s value must be assigned from the Super NES CPU.

2.2.4.2 VERSION CODE REGISTER (VCR)

This assigns the GSU version code. Its value can be read only
from the Super NES CPU.

2.2.4.3 CONFIG REGISTER (CFGR)

This register assigns the execution speed for GSU multiplication
instructions and enables/disables the interrupt signal to the Su-
per NES CPU. Its value must be assigned from the Super NES
CPU prior to GSU activation.

2.24.4 CLOCK SELECT REGISTER (CLSR)

This register is used to assign the operating frequency for the
Super FX. Its value must be assigned from the Super NES CPU
prior to activation of the Super FX.

2-2-5

GSU FUNCTIONAL OPERATION

]

2.3

INSTRUCTION SET

There are 98 instructions available in the GSU. These instructions and their func-
tions are given in the following table.

CLASSIFICATION INSTRUCTION FUNCTION
GETB Get byte from ROM buffer
E’gﬁ}l %ﬁfgi,}’ak GETBH Get high byte from ROM buffer
buffer) to register | GETBL Get low byte from ROM buffer
GETBS Get signed byte from ROM buffer
D GETC Get byte from ROM to color register
I
AN LDW (Rm) |Load word data from RAM
Ts ggﬁ %ame pak ITDB (Rm) | Load byte data from RAM
AT OB M Rn, (xx)| Load word data from RAM using 16 bit
, oad word data from using its
T 5 LMS Rn, (yy)| Load word data from RAM, short address
i C STW (Rm) |Store word data to RAM
N T | From registerto |STB (Rm) | Store byte data to RAM
S (I) game pak RAM fSM (xx), Rn| Store word data to RAM using 16 bits
]l; N (RAM bufer) SMS (yy), Rn| Store word data to RAM, short address
R S SBK Store word data, last RAM address used
From register MOVE Rn, Rn’ | Move word data
to register MOVES Rn, Rn’ | Move word data and set flags
Immediate data |IWT Rn, #xx | Load immediate word data
to register IBT Rn, #pp | Load immediate byte data
ADD Rn
ADD #n |Ad
ADC Rn .
ADC #n Add with carry
SUB Rn
SUB #n Subtract
SBC Rn Subtract with carry
CMP Rn Compare
Arithmetic MULT Rn _ .
%s)terfg;%:] . MULT #n Signed multiply
UMULT Rn ' ,
UMULT #n Unsigned multiply
FMULT Fractional signed multiply
LMULT 16x16 signed multiply
DIV2 Divide by 2
INC Rn Increment
DEC Rn Decrement
Table 2-2-2 Instruction Set (Sheet 1)

2-2-6

SNES DEVELOPMENT MANUA

CLASSIFICATION INSTRUCTION FUNCTION
ﬁgg 5;‘ Logical AND
OR Rn i
Logical OR #n Logical OR
Operation NOT Tnvert all bits
nstructions
XOR Rn . .
XOR #n Logical exclusive OR
BIC Rn .
BIC #n Bit clear mask
) ASR Arithmetic shift right
st?sltfrtuctions LSR Logical shift right
ROL Rotate left through carry
ROR Rotate right through carry
HIB Value of high byte of register
Byte LOB Value of low byte of register
Transfer MERGE Merge high byte of RS and R7
Instructions . :
SEX Sign extend register
SWAP Swap low and high byte
JMP Rn Jump
LIMP Rn Long jump
BRA e Branch always
BGE e Branch on greater than or equal to zero
BLT e Branch on less than zero
BNE e Branch on not equal
BEQ e Branch on equal
iump, Branch, BPL e Branch on plus
oop Instructions _
BMI e Branch on minus
BCC e Branch on carry clear
BCS e Branch on carry set
BVC e Branch on overflow clear
BVS e Branch on overflow set
LOOP Loop
LINK #n Link return address
Bank Set-up ROMB Set ROM data bank
Instructions RAMB Set RAM data bank
CMODE Set plot mode
Plot-related COLOR Set plot color
Instructions PLOT Plot pixel
RPIX Read pixel color
Table 2-2-2 Instruction Set (Sheet 2)

2-2-7

GSU FUNCTIONAL OPERATION

]
CLASSIFICATION| INSTRUCTION FUNCTION

Prefix Flag ALT1 Set ALT1 mode
Instructions ALT2 Set ALT2 mode

ALT3 Set ALT3 mode

R

Prefix Register FROM _An Set Sreg
Instructions TO Rn Set Dreg

WITH Rn Set Sreg and Dreg
GSU C | CACHE Set cache base register
lnstruct?gr:rso NOP No operation

STOP Stop processor

MOVEW Rn, (Rn’)

Load word data from RAM

MOVEB Rn, (Rn’)

Load byte data from RAM

MOVE Rn, (xx)

Load word data from RAM using 16 bits

MOVEW (Rn’), Rn

Store word data to RAM

MOVEB (Rn’), Rn

Store byte data to RAM

MOVE (xx), Rn [Store word data to RAM using 16 bits
mgtc:,loctions MOVE Rn, #xx |Load immediate word data
LEA Rn, xx Load effective address
Table 2-2-2 Instruction Set (Sheet 3)

2-2-8

SNES DEVELOPMENT MANUAL

|

Chapter 3

3.1

Memory Mapping

SUPER NES CPU MEMORY MAP

The figure on the following page depicts the memory map for the Super NES
CPU. Refer to this figure while reading the sub-paragraphs below.

3.1.1

3.1.2

3.1.3

3.1.4

3.1.5

GSU INTERFACE

This area (A) is mapped to address 3000H ~ 32FFH in banks 00H ~ 3FH
and 80H ~ BFH. (Refer to “GSU Internal Register Configuration”.)

GAME PAK ROM

Game pak ROM (B) is mapped to 2 Mbytes starting from 00:8000H. Two
Mbytes from 40:0000H (B’) are used for the ROM image. This image is
stored in blocks of 32 Kbytes, as indicated on the memory map by circled
numbers (i.e., area; @’ is the image of area @, @’ is the image of area @,
and so forth).

GAME PAK RAM

Game pak RAM (C) is mapped to128 Kbytes starting from 70:0000H.
Eight Kbytes from address 6000H (C’) in each of banks 00~3F and
80~BF are used for RAM image.

BACK-UP RAM
Back-up RAM (D) is mapped to 128 Kbytes from 78:0000H.

SUPER NES CPU ROM
Six Mbyte of ROM (E) is mapped from 80:8000H.

2-3-1

MEMORY MAPPING

H0000 7 S — H0000
NVYH-M
__ 53N Jedng
L0002 E\ 10002
/ HO00€E
Hoo0E {v) NSO HOOES
(D) \
X
W (e)) v
H0009 v m M\ 5 H0009
IOV VY H W / 4 30ovAl W
MVd IJNVD y N “ :“ MVd INVD 10008
H0008 N d
//, \ M d m O“
| 3OVII) n 7 7
L WOY N / m\
L Svd Y || 3 X %/
N nu- “ “ va
DOO® m M“ WOH NdD
1
| 2
| 7
Hod44 v Hdd444
0010 20 J€0r 45 0L L2 8L 6L 3L 4L08 49 00

dVIN AHOW3W NdO S3AN H3dNS

44\ SS8Ippy
yueg

Super NES CPU Memory Map

Figure 2-3-1

2-3-2

SNES DEVELOPMENT MANUAL

{

3.2 GSU MEMORY MAPPING

The GSU memory map is depicted on the following page.

3.2.1

3.2.2

GAME PAK ROM

The game pak ROM (A) is mapped to 2 Mbytes starting from 00:8000H.
Two Mbytes from 40:0000H (A’) are used for the ROM image. This image
is stored in blocks of 32 Kbytes, as indicated on the memory map by cir-
cled numbers (i.e., area; @' is the image of area @, @’ is the image of
area @, and so forth). Other areas should not be used for this purpose.

GAME PAK RAM

Game pak RAM (B) is mapped to128 Kbytes starting from 70:0000H.

When the GSU accesses memory, it specifies bank addresses using

three bank registers. These are; Program Bank Register (PBR), ROM
Bank Register (ROMBR), and RAM Bank Register (RAMBR).

2-3-3

MEMORY MAPPING

'H4S 01 HOO syueq Ajoads 0} pash aq Ajuo ued HgWOH oyl
‘paddew si Jey} ssaippe yueq Aue Ajoads o} pasn aq ued Hgd 8yl :8loN

H0000 /// :88
H0002 "
HO00E ou:
HOOEE o
HOO0O0Y X @/A) e
W
H0009 ” .
|
HO008 N N .
Y
” A.(V N &
- IOVINI)
't NOY] 5
[Mvd
N ” _2
ME
N \ .
D@ @ eeerrereeree N
N
I
(v) nod @ //
HA3A 4/// Hd444
00 10 20 d€ ov 4S5 0L 1L g
yuegq

dVIN AHOW3IN X4 43dNS

Super FX Memory Map

Figure 2-3-2

2-3-4

SNES DEVELOPMENT MANUAL

L

Chapter 4

GSU Internal Register Configuration

The GSU internal registers will be described in detail in this chapter. Although many of
these registers may be accessed from the Super NES CPU, none can be accessed in
this way during operation of the GSU, with the exception of the Status/Flag Register
(SFR) and Version Code Register (VCR). In addition, when addressing the 16-bit regis-
ters from the Super NES CPU, the low byte must be accessed first.

All addresses denoted with (**) can be accessed in banks 00H ~ 3FH and

80H ~ BFH.

4.1

Access from Super NES CPU:

Register Size:
GSU Access Method:

GENERAL REGISTERS (RO ~ R13)

R/W
16 bits

Various transfer instructions (LDW (Rn))
Various Operation Instructions (ADD Rn)

Other Instructions

Rﬁgﬁt:r C%ﬁ)irdﬁrEeis Special Functions Initial Value
RO ** :3000H, 3001H |Default source/destination register Invalid
R1 **:3002H, 3003H |PLOT instruction, X coordinate 0000H
R2 **:3004H, 3005H |PLOT instruction, Y coordinate 0000H
R3 ** :3006H, 3007H Invalid
R4 ** :3008H, 3009H |LMULT instruction, lower 16 bits Invalid
R5 ** :300AH, 300BH Invalid
R6 ** :300CH, 300DH|FMULT and LMULT instructions, Invalid

multiplication
R7 **:300EH, 300FH |MERGE instruction, source 1 Invalid
R8 **:3010H, 3011H |MERGE instruction, source 2 Invalid
R9 **:3012H, 3013H Invalid
R10 |{**:3014H, 3015H Invalid
R11 | **:3016H, 3017H [LINK instruction destination register Invalid
R12 [**:3018H, 3019H |LOOP instruction counter Invalid
R13 |**:301AH, 301BH [LOOP instruction branch Invalid
Table 2-4-1 GSU General Registers

2-4-1

GSU INTERNAL REGISTER CONFIGURATION

J

4.2

For LINK and LOOP special functions refer to “Instruction Execution”, for other
special functions refer to the instruction name in the chapter titled “Description of

Instructions”.
RO
D15 D14 D13 D12 D11 D10 D9 D8 3001H
D7 D6 D5 D4 D3 D2 D1 DO 3000H
Figure 2-4-1 Example of General Register

GAME PAK ROM ADDRESS POINTER (R14)

Access from Super NES CPU: R/W
Super NES CPU Addresses: **:301CH, 3011DH
Register Size: 16 bits
GSU Access Method: Various transfer instructions (LDW (Rn))
Various operation instructions (ADD Rn)
Other instructions
D7 D6 D5 D4 D3 D2 D1 DO
GAME PAK ROM
A5 | A14 | A13 | A12 | A11 | Aat0 | Ao | as | SO1DH
GAME PAK ROM
A7 | A6 | A5 | a4 | A3 | A2 | A1 | Ao | SOICH

R14 is a pointer that specifies the game pak ROM address when data are loaded
from the game pak ROM to an internal register. Typically, the ROM buffering sys-
tem will be used for this process.

242

SNES DEVELOPMENT MANUAL

4.3 PROGRAM COUNTER (R15)

Access from Super NES CPU:
Super NES CPU Addresses:

Register Size:
Default Address:
GSU Access Method:

R/W
**:301EH, 3011FH

16 bits
0000H
Various branching instructions (JMP Rn)
Other instruction

D7 D6 D5 D4 D3 D2 D1 DO
Program Counter

PC15 | PC14 | PC13 | PC12 | PC11 | PC10 | PC9 PC8
Program Counter

PC7 PC6 PC5 PC4 PC3 PC2 PC1 PCO

301FH

301EH

R15 is the GSU program counter. If its value is changed by a transfer instruction
or operation instruction, the program jumps to the address of the new value.

2-4-3

GSU INTERNAL REGISTER CONFIGURATION

4.4 STATUS/FLAG REGISTER (SFR)

Access from Super NES CPU: R/W
Super NES CPU Addresses: ** :3030H, 3031FH

3031H
Status
Portion

3030H
Flag
Portion

Register Size: 16 bits
Default Address: 0000H
D7 D6 D5 D4 D3 D2 D1 DO
IRQ * * B IH IL ALT2 | ALTH
* R G ov S CcY Z *
* This bit is 0 when this register is read.
Flag Description
Z Zero flag
CY Carry flag
S Sign flag
ov Overflow flag
G Go flag (set to 1 when the GSU is running)
R Set to 1 when reading ROM using R4 address.
ALT1 Mode set-up flag for the next instruction
ALT2 Mode set-up flag for the next instruction
IL Immediate lower 8-bit flag
IH Immediate higher 8-bit flag
B Set to 1 when the WITH instruction is executed.
IRQ Interrupt flag
Table 2-4-2 GSU Status Register Flags

The Status/Flag register indicates the status of the GSU. It may be accessed from

the Super NES CPU during GSU operation to determine GSU status.

2-4-4

SNES DEVELOPMENT MANUAL

[

4.5

4.6

PROGRAM BANK REGISTER (PBR)

Access from Super NES CPU: R/W
Super NES CPU Addresses: ** :3034H

Register Size: 8 bits
Default Address: Undefined
GSU Access Method: LJMP instruction

D7 D6 D5 D4 D3 D2 D1 DO
Program Bank
A23 A22 A21 A20 A19 A18 A17 A16

3034H

The program bank register specifies the memory bank register to be accessed
when the GSU is loading the program code.

GAME PAK ROM BANK REGISTER (ROMBR)

Access from Super NES CPU: R
Super NES CPU Addresses: ** :3036H

Register Size: 8 bits
Default Address: Undefined
GSU Access Method: ROMB instruction

D7 D6 D5 D4 D3 D2 DI DO
ROM Data Bank |
A23 | A22 | A21 | A20| A19| A18 | A17 | A1e | 3036H

The game pak ROM bank register specifies the game pak ROM bank when load-
ing data from game pak ROM using the ROM buffering system.

2-4-5

GSU INTERNAL REGISTER CONFIGURATION

1

4.7 GAME PAK RAM BANK REGISTER (RAMBR)

4.8

Access from Super NES CPU: R
Super NES CPU Addresses: **:303CH

Register Size: 1 bit
Default Address: Undefined
GSU Access Method: RAMB instruction

D7 D6 D5 D4 D3 D2 D1 DO

RAM Data Bank
- * * | * | * I - > A16 303CH

Bank = 70H when DO =0
Bank = 71H when DO =1 * This bit is 0 when this register is read.

The game pak RAM bank register specifies the game pak RAM bank when data
are read/written between game pak RAM and the GSU internal registers. The
RAMB instruction specifies bank 70H or 71H for game pak RAM access.

CACHE BASE REGISTER (CBR)

Access from Super NES CPU: R
Super NES CPU Addresses: **:303EH, 303FH

Register Size: 12 bits
Default Address: 0000H
GSU Access Method: LJMP, CACHE instructions

D7 D6 D5 D4 D3 D2 D1 DO

Cache Base Address
A5 | a14 | a13 | a12 | a11 | at0 | Ao As | SO3FH

Cache Base Address
A7 A6 A5 A4 * * * * | S03EH

* This bit is 0 when this register is read.

The cache base register specifies the starting address when data are loaded from
game pak ROM or RAM to the cache RAM.

2-4-6

SNES DEVELOPMENT MANUAL

4.9 SCREEN BASE REGISTER (SCBR)

Access from Super NES CPU: W
Super NES CPU Addresses: **:3038H

Register Size: 8 bits
Default Address: Undefined
GSU Access Method: None

D7 D6 D5 D4 D3 D2 Di DO
Screen Base Address
A17 | A16 | A15 | A14 | A13 | A2 | Aa11 | A1o | 3038H

The screen base register is used to specify the start address in the character data
storage area.

247

GSU INTERNAL REGISTER CONFIGURATION

1

4.10 SCREEN MODE REGISTER (SCMR)

Access from Super NES CPU: W

Super NES CPU Addresses: ** :303AH

Register Size: 6 bits

Default Address: OOH

GSU Access Method: None
D7 D6 D5 D4 D3 D2 D1 DO

Screen Height Select Color Gradient

- - HT1 | RON | RAN | HTO | MD1 | MDO

303AH

The screen mode register specifies the color gradient and screen height during
PLOT processing and controls game pak ROM and RAM bus assignments.

4.10.1 SCREEN HEIGHT

Ht 1 Ht O Mode
0 0 128 (pixels)
0 1 160 (pixels)
1 0 192 (pixels)
1 1 OBJ mode
Table 2-4-3 Screen Height

4.10.2 COLOR GRADIENT

Mod 1 Mod 0 Mode
0 0 4-color mode
0 1 16-color mode
1 0 Not used
1 | 256-color mode
Table 2-4-4 Color Gradient

4.10.3 ROM/RAM ENABLE FLAGS

When:

RON =0, the Super NES CPU has game pak ROM bus access.

1, the GSU has game pak ROM bus access.

RAN =0, the Super NES CPU has game pak RAM bus access.

1, the GSU has game pak RAM bus access.

2-4-8

SNES DEVELOPMENT MANUAL

L

4.11 COLOR REGISTER (COLR)

4.12

Access from Super NES CPU: Disabled

Super NES CPU Addresses:
Register Size: 8 bits
Default Address: Undefined

GSU Access Method:

COLOR, GETC instructions

D7 D6 D5 D4 D3 D2 D1 DO
Color Data
CD7 CcD6 CD5 CD4 CD3 CD2 CD1 CcDOo

The color register contains data which specifies the colors to be plotted when

PLOT processing is performed.

PLOT OPTION REGISTER (POR)
Access from Super NES CPU: Disabled

Super NES CPU Addresses:
Register Size: 5 bits
Default Address: Undefined

GSU Access Method:

D7 D6 D5 D4 D3

CMODE instruction

D2 D1 Do
Freeze | High Dither | Trans-
OBJ | High | Nibble | Fag | Parent
- - - Flag | Flag Flag Flag

The plot option register contains flags which specify the mode to be used when a

COLOR, GETC, or PLOT instruction is executed.

2-4-9

GSU INTERNAL REGISTER CONFIGURATION

B

4.13

4.14

BACK-UP RAM REGISTER (BRAMR)

Access from Super NES CPU: W
Super NES CPU Addresses: **:3033H

Register Size: 1 bit
Default Address: OOH
GSU Access Method: None

D7 D6 D5 D4 D3 D2 D1 DO

BRAM
Flag | 3033H

When:
BRAM Flag = 0, BRAM is disabled.
1, BRAM is enabled.

Data becomes “protected” when the BRAM flag is reset (“0”) after saving data to
the Back-up RAM.

VERSION CODE REGISTER (VCR)

Access from Super NES CPU: R
Super NES CPU Addresses: ** :303BH

Register Size: 8 bit
Default Address: Undefined
GSU Access Method: None

D7 D6 D5 D4 D3 D2 D1 DO
Version Code
vcz | ves | ves | VC4 | VC3 | vc2 | ve1 | vco | 303BH

The version code register permits the user to read the GSU version code.

2-4-10

SNES DEVELOPMENT MANUAL
L ’ ‘ I

4.15 CONFIG REGISTER (CFGR)

Access from Super NES CPU: W
Super NES CPU Addresses: **:3037H

Register Size: 8 bit
Default Address: OOH
GSU Access Method: None

D7 D6 D5 D4 D3 D2 D1 DO

IRQ - MSO - - - - - 3037H

L Multiplier Speed Selection
0 : Standard Speed Mode
1 : High Speed Mode

L—» |IRQ Mask Flag
This is equal to 1 when the GSU interrupt request is masked.

The CONFIG register selects the operating speed of the multiplier in the GSU and -
sets up a mask for the interrupt signal.

Note: When the Super FX operates at 21 MHz (when the CLSR flag of the
Clock Select Register is “1”), MSO0 flag should be fixed at “0”.

4.16 CLOCK SELECT REGISTER (CLSR)

Access from Super NES CPU: W
Super NES CPU Addresses: **:3039H

Register Size: 1 bit
Default Address: OOH
GSU Access Method: None

D7 D6 D5 D4 D3 D2 D1 DO

LSR
- - - - - - - (%:|asg 3039H

When:
CLSR Flag = 0, Super FX operates at 10.7 MHz
=1, Super FX operates at 21.4 MHz

This register assigns the Super FX operating frequency.

2-4-11

GSU PROGRAM EXECUTION

]

Chapter 5

5.1

GSU Program Execution

STARTING THE GSU

The GSU is placed in the idle state when the Super NES control deck is reset. The
GSU is started by writing to its internal program counter (R15) from the Super
NES. The GSU programs operate on the game pak ROM, RAM, or cache RAM,
but the GSU activation method differs depending upon which memory is access-
ed. The various methods are described below.

5.1.1 STARTING GSU PROGRAM IN GAME PAK ROM

The GSU is started by the following method when the GSU program is to
operate in the game pak ROM.

5.1.1.1

5.1.1.2

BUS CONTROL

In order for the Super NES CPU to pass game pak ROM bus
access to the GSU, the Super NES CPU program used to start
the GSU in an area other than the game pak ROM (such as
WRAM) is transferred to the GSU and the GSU jumps to that
program.

However, if the optional ROM for the Super NES is being used,
the GSU can be started by running the start program in Super
NES ROM, making the above transfer unnecessary.

REGISTER ADDRESSING

In the Super NES CPU program for starting the GSU, first as-
sign the following registers.

e PBR (Super NES CPU Address, **:3034H)

* SCBR (Super NES CPU Address, **:3038H)

* SCMR (Super NES CPU Address, **:303AH)
Note: RON absolutely must be set to “1”.

* CFGR (Super NES CPU Address, **:3037H)

* CLSR (Super NES CPU Address, **:3039H

Subsequently, when the lead address of the GSU program is
written from the Super NES CPU to R15 (Super NES CPU ad-
dress, **:301EH), the GSU can be started from that address.

An example of the program required for starting the GSU from
the Super NES is demonstrated on the following page.

2-5-1

SNES DEVELOPMENT MANUAL

=

mem8
Ida
sta
sta
Ida
sta
ida
sta
lda
ora
sta
mem16
rep
lda
sta

#clock data

3039H ;Sets operating frequency
3037H ;Sets CONFIG register
#screen base '

3038H ;Sets screen base
#program bank

3034H ; Sets program code bank
#screen size mode

18H ; Sets RON, RAN flag, screen size, and color number
303aH

#00100000B

#program address

301EH ; Sets program counter

5.1.2 STARTING GSU PROGRAM IN GAME PAK RAM
The following procedure is used to start the GSU when its program is to

operate in
5.1.2.1

5.1.22

game pak RAM.
TRANSFER GSU PROGRAM

The Super NES CPU first transfers the GSU program from the
game pak ROM to game pak RAM. If the GSU will not be using
game pak ROM, the Super NES CPU does not need to pass
the game pak ROM bus access to the GSU.

REGISTER ADDRESSING

In the Super NES CPU program for starting the GSU, first as-
sign the following registers.

e PBR (Super NES CPU Address, **:3034H)

* SCBR (Super NES CPU Address, **:3038H)

e SCMR (Super NES CPU Address, **:303AH)
Note: RAN absolutely must be set to “1”.

* CFGR (Super NES CPU Address, **:3037H)

* CLSR (Super NES CPU Address, **:3039H)

Subsequently, when the lead address of the GSU program is
written from the Super NES CPU to R15 (Super NES CPU ad-
dress, **:301EH), the GSU can be started from that address.

2-5-2

GSU PROGRAM EXECUTION

]

5.1.3

STARTING GSU PROGRAM IN CACHE RAM

The following procedure is used to start the GSU when its program is to
operate in cache RAM.

5.1.3.1

5.1.3.2

TRANSFER GSU PROGRAM

The Super NES CPU first transfers the GSU program from the
game pak ROM to cache RAM. If the GSU will not be using
game pak ROM or RAM, the Super NES CPU does not need to
pass the game pak ROM or RAM bus access to the GSU.

REGISTER ADDRESSING

In the Super NES CPU program for starting the GSU, first as-
sign the following registers.

e PBR (Super NES CPU Address, **:3034H)
» SCBR (Super NES CPU Address, **:3038H)
e SCMR (Super NES CPU Address, **:303AH)
* CFGR (Super NES CPU Address, **:3037H)
* CLSR (Super NES CPU Address, **:3039H)

Subsequently, when the lead address of the GSU program is
written from the Super NES CPU to R15 (Super NES CPU ad-
dress, **:301EH), the GSU can be started from that address.

5.2 STOPPING THE GSU

The following two methods may be used to stop the GSU.

* GSU auto-stop using the STOP instruction
* Forced stop from the Super NES CPU using the GO flag

GSU AUTO-STOP USING STOP INSTRUCTION

The STOP instruction is one of the instructions in the GSU instruction set.
When the GSU reads the STOP instruction, it resets the GO flag, sends
an interrupt (IRQ) to the Super NES CPU (to inform the CPU that pro-
cessing is complete), and goes into the idle state.

The value in R15 after the GSU has executed a STOP instruction varies
depending upon the instruction that was executed immediately prior to
the STOP instruction.

5.2.1

Instruction Type Value of R15
Transfer Data to R15 R15 Data + 1
Jump or Branch Jump or branch destination
address + 1
CACHE Instruction Address of STOP instruction + 1
Other Instruction Address of STOP instruction + 1

2-5-3

SNES DEVELOPMENT MANUAL

L

5.2.2

FORCED STOP FROM SUPER NES CPU USING GO FLAG

The GSU can be forceably stopped by writing a “0” from the Super NES
CPU to the GO flag in the status/flag register (Super NES CPU address,
** :3030H). This clears the data in the cache and resets the cache base
register to 0000H.

5.3 MEMORY ACCESS FROM SUPER NES CPU DURING GSU
OPERATION

If a “0” is written from the Super NES CPU to the RON flag in the status/flag regis-
ter (Super NES CPU address, ** :303AH) during GSU operation, the GSU will
shift to WAIT status when it requires game pak ROM access. This makes it tem-
porarily possible to access game pak ROM from the Super NES CPU.

5.4

The WAIT status is subsequently canceled by writing a “1” to RON from the Super
NES CPU. This causes the GSU to resume processing. In a similar manner,
game pak RAM can be temporarily accessed by the Super NES CPU, using the
RAN flag in the screen mode register.

INTERRUPTS

5.4.1

SUPER NES CPU INTERRUPT VECTOR

Game pak ROM access from the Super NES CPU is inhibited during
GSU operation and when the RON flag is “1”. If an interrupt (NMI) is gen-
erated to the Super NES CPU under these conditions, an interrupt vector
from the game pak ROM will not be available for the Super NES CPU.
This will cause an error. In order to avoid this problem, when a Super
NES CPU interrupt vector is read, the GSU outputs a dummy vector on
the data bus.The table below expresses the relationship between the Su-
per NES CPU interrupt vector addresses and the dummy vectors. By
placing interrupt routines in all the memories except the game pak ROM
and encoding a jump instruction to each of the interrupt routines at
WRAM addresses 00:0104H, 00:0100H, 00:0108H, and 00:010CH, inter-
rupt processing can be executed without accessing the game pak ROM.

Interrupt Vector Address Dummy Vector
00:FFE4 00:0104
00:FFE6 00:0100
00:FFE8 00:0100
00:FFEA 00:0108
00:FFEE 00:010C

Table 2-5-1 Dummy Interrupt Vector Addresses

2-5-4

GSU PROGRAM EXECUTION

Note: If the game pak ROM is accessed from the Super NES CPU dur-
ing GSU operation when GO and RON are “1”, the dummy data
can be read using the value of the lower 4 bits of that address.
This will generate the dummy addresses described above. The ta-
ble below demonstrates this.

Lower 4 Bits of Address Dummy Data
OH, 2H, 6H, 8H, CH O00H
4H 04H
AH 08H
EH OCH
Other 01H

Table 2-5-2 Dummy Data

5.4.2 INTERRUPT FROM GSU TO SUPER NES CPU

The STOP instruction generates an IRQ from the GSU to the Super NES
CPU. Therefore, the Super NES CPU can continue its own processing
without having to periodically monitor the GSU for the end of its routine.
Since there are instances in which an IRQ is generated for some other
reason, the Super NES CPU must determine if the GSU was the source
of the IRQ. There is an IRQ flag at bit 15 of the GSU status register. If this
flag is “1”, the IRQ was generated by the completion of GSU processing.
When bit 15 of this status register is read, the bit is reset to “0”. The IRQ
output by the GSU can be disabled by setting bit 7 in the CONFIG regis-
ter to “1”.

2-5-5

SNES DEVELOPMENT MANUAL

Chapter 6 Instruction Execution

6.1

6.2

READING INSTRUCTION CODE

6.1.1 EXECUTION IN GAME PAK ROM/RAM

The GSU executes a program by reading the instruction codes from the
game pak ROM or RAM at the addresses specified by the PBR and pro-
gram counter (R15). The contents of the PBR determines whether the in-
struction code is to be read from game pak ROM or RAM (refer to
“Memory Mapping”).

The RON flag must be set (1) when an instruction code is read from
game pak ROM. If the RON flag is reset (0), the GSU will be placed in the
WAIT state when a game pak ROM instruction code is loaded. Likewise,
the RAN flag must be set (1) when an instruction code is read from game
pak RAM. If the RAN flag is reset (0), the GSU will be placed in the WAIT
state when a game pak RAM instruction code is loaded.

6.1.2 EXECUTION IN CACHE RAM

If the GSU's program counter (R15) is in a cache area determined by the
cache base register and the data in the cache are valid, the GSU will read
the instruction code from the cache RAM and execute it. When a program
is being executed in the cache, even if RON or RAN is reset (0), the GSU
will not stop when an instruction code is loaded. Consequently, it be-
comes possible to access the game pak ROM or RAM from the Super
NES CPU.

PIPELINE PROCESSING

The GSU employs a “pipeline” for high-speed operation. This “pipeline” is a mech-
anism that, in parallel with the execution of an instruction, loads the next step and
prepares it as the next instruction. The program counter (R15) indicates the next
address following the instruction currently being executed.

Normally, it is not particularly necessary to be aware of this processing, but it must
be considered when using instructions that change the program counter (R15),
such as branch or jump instructions. When a branching process is executed, the
instruction code at the next address is loaded into the pipeline. This instruction
code is then executed in parallel with a load of the instruction code at the branch
destination address into the pipeline. This is demonstrated in example 1 on the
following page.

2-6-1

INSTRUCTION EXECUTION

i

(Example 1)
BNE FROG
INC R1
FROG: ADD R2

When the program in Example 1 is executed, the INC instruction will be executed
regardiess of the presence of a branch instruction, since it is loaded into the pipe-
line while processing the BNE instruction.

Note: Be especially careful when placing an instruction of 2 bytes or more after
an instruction that changes the program counter.

(Example 2)
BNE LOP1
BRA LOP2
LOP1; TO R1

When the program in Example 2 is executed, the program jumps to LOP1 when
the Z flag is 0, but the first byte of the code “BRA LOP2” has already been loaded
into the pipeline. Therefore, the code 11H at the jump destination “TO R1” will be
processed as the offset value of the BRA instruction, causing “BRA ****” to be ex-
ecuted instead of “TO R1”.

Note: The value for **** = LOP1+1+11H.

In this situation, a NOP instruction should be inserted after the BNE instruction, as
shown below.

(Example 3)
BNE LOP1
NOP
BRA LOP2
LOP1: TO R1

2-6-2

SNES DE

VELOPMENT MANUAL

6.3

6.4

PROGRAM COUNTER

The GSU program counter is assigned to R15. When the value for R15 is
changed by an instruction, the program jumps to the address indicated by that val-
ue.

(Example 4)

IWT RO,#0010H
IWT R4,#0020H
IWT R15,#Address

Address: ADD R4
INC R3

In example 4, the program jumps to the specified address at the IWT instruction
on the third line. Due to pipeline processing, the ADD instruction in the 7th line will
be executed after the NOP instruction in the 4th line is executed. In addition, the
address following the instruction currently being executed can be identified by
moving the contents of R15 to another register.

FLAG PREFIXES

In the GSU, the action of the next instruction code to be executed varies depend-
ing upon the values of the status flags (ALT1, ALT2, B), set by instructions such
as the ALT1 instruction.

(Example 5)

The instruction code 53H will perform the processing shown below depending
upon the values for ALT1 and ALT2.

When ALT1=0, ALT2=0 Sreg+R3—Dreg (ADD R3)
When ALT1=1, ALT2=0 Sreg+R3+CY—Dreg (ADC R3)
When ALT1=0, ALT2=1 Sreg+3—Dreg (ADD #3)
When ALT1=1, ALT2=1 Sreg+3+CY—Dreg (ADC #3)

2-6-3

INSTRUCTION EXECUTION

i

(Example 6)

The instruction code 11H will perform the processing shown below depending on
the value of the B flag.

When B=0 Set Dregto R1 (TO R1)
When B=1 Sreg—R1 (MOVE R1,Rn n=value for Sreg)

The ALT1 instruction is used to set the ALT1 flag to 1. Likewise, the ALT 2 instruc-
tion is used to set the ALT2 flag to 1. The ALTS3 instruction sets both the ALT1 flag
and ALT2 flag. The WITH instruction is used to set the B flag.

Normally, the flags which were set by these instructions are cleared after the next
instruction is executed. The flags are not cleared when the next instruction is a
FROM, TO, WITH, ALT1, ALT2, ALT3, or a branch instruction.

For instance, since the TO and FROM instructions become MOVE and MOVES
instructions, respectively; when the B flag is set, these flags will be cleared after
the instructions are executed. They will also be cleared after the execution of a
NOP instruction.

Since ALT1, ALT2, and ALT3 instructions are used in combination with the next
instruction, they do not need to be thought of as independent instructions. For in-
stance, there is no need to be specifically aware that “if ADD R3 is executed after
setting the ALT1 flag with an ALT1 instruction, the instruction becomes ADC R3".
The process can simply be seen as the two-byte instruction “ADC R3". In the as-
sembler, as well, it is normally unnecessary to specifically code an ALT1 instruc-
tion or to write a MOVE instruction as a WITH instruction and a TO instruction.

However, as demonstrated in the following examples, these things need to be
kept in mind when accelerating program processing by effectively using the pipe-
line.

(Example 7)
IWT R3,#100H
LOP1: ADC RO ; ALT1+ADD RO
PLOT
DEC R3
BNE LOP1
NOP

2-6-4

SNES DEVELOPMENT MANUAL

L

Due to pipeline processing, the code following a branching instruction will be exe-
cuted regardiess of the presence of a branch. In Example 7, the NOP instruction
after the BNE instruction will always be executed, but this program can be substi-
tuted as demonstrated below.

(Example 8)
IWT R3,#100H
ALT1

NEWLOP1: ADD RO
PLOT
DEC R3
BNE NEWLOP1
ALTAH

In this example, the branch destination “ADC R0” is divided into “ALT1” and “ADD
RO”. ALT1 is placed after BNE, changing the address of the branch destination.
Thus, the pipeline code at the time of the branch becomes useful.

2-6-5

INSTRUCTION EXECUTION

J

6.5

A different situation is demonstrated below.

(Example 9)
IWT R3,#100H
LOP2: PLOT
MOVE R4,R5 ; WITH R5+TO R4
DEC R3
BNE LOP2
NOP

This program can be substituted as shown in Example 10.

(Example 10)
IWT R3,#100H

LOP2: PLOT
DEC R3
WITH R5
BNE LOP2
TO R4

In example 10, “MOVE R4,R5” is split into “WITH R5” and “TO R4”. This kind of
rewrite is possible because the B flag is not changed by the branch instruction.

REGISTER PREFIXES

Most of the GSU instructions use a source register (Sreg) and destination register
(Dreg). The Sreg indicates the general register used for the source of the instruc-
tion, while the Dreg indicates the general register used to store the result. The
Sreg and Dreg can be assigned in the GSU using the TO, FROM and WITH regis-
ter prefix instructions. The Sreg is assigned using the FROM instruction and the
Dreg using the TO instruction. The Sreg and Dreg can both be assigned using the
WITH instruction. The Sreg and Dreg return to the default RO when any instruction
other than TO, FROM, WITH, ALT, or a branch is executed.

2-6-6

SNES DEVELOPMENT MANUAL

If a TO instruction or FROM instruction follows a WITH instruction, as demonstrat-
ed below, they will be executed as MOVE or MOVES instructions, causing Sreg
and Dreg to return to the defaults after the instructions are executed. These regis-
ters also return to the defaults after a NOP instruction is executed.

(Example 11)

The program used to execute R3=R4-R5 is as follows.

TO R3
FROM R4
SuB R5

The operation R0=R4-R5 can be performed by executing the following program,
omitting the TO instruction.

FROM R4

SuB R5

The operation R0=R0-R5 can be performed using the following program. The
FROM instruction is omitted.

SuB R5

After a normal instruction has been executed, with the exception of TO, FROM,
WITH, ALT, or a branch, Sreg and Dreg are both assigned the default register
(RO). Consequently, in the following program, the initial SUB instruction will exe-
cute R3=R4-R5, but the second SUB instruction will execute RO=R0-R5.

TO R3
FROM R4
SUB R5
SuB R5

The WITH instruction not only assigns Sreg and Dreg, but also sets the B flag
within the status/flag register. The TO and FROM instructions act as different in-
structions when the B flag is set.

* When a TO instruction is next, it performs a MOVE instruction (instruction to
move between registers).

* When a FROM instruction is next, it performs a MOVES instruction (instruction
to move between registers and set flags according to the data loaded).

2-6-7

INSTRUCTION EXECUTION

}

6.6

6.7

LOOP

The LOOP instruction is provided for efficient loop processing in the GSU. The
LOOP instruction decrements the value in R12 by 1 and, when the result is not 0,
loads the address in R13 into the program counter. When the result is 0, the next
instruction is executed without branching.

Consequently, when performing loop processing using the LOOP instruction, it is
necessary to store the loop count number in R12 and the loop return destination
address in R13.

(Example 12)

IWT R14,#DATA ;R14=ROM Address for Read Data

IWT R12,#0100H ;R12=Loop Count Number

MOVE R13,R15 ;R13=REPEAT (Loop Back Address)
REPEAT:

GETB

INC R14

LOOP ;R12=R12-1. IF (R12<>0) THEN PC=R13

PLOT

SUBROUTINES

The GSU does not have any instructions for making subroutine calls. Therefore,
when using a subroutine, it will be necessary to specify the return destination ad-
dress in the program.

(Example 13)

A000 FB 07 A0 IWT R11,#RETURN

A003 FF 03 A1 IWT R15,#SUB1 ;Jump to SUBH1

A006 01 NOP ;Dummy

A007 DO RETURN: INC RO ;Return Address

A103 96 SUBT: ASR

A104 96 ASR

A105 2B 1F MOVE R15R11 ;Return to Main Routine
A107 01 NOP ;Dummy

2-6-8

SNES DEVELOPMENT MANUAL

L

6.8

In Example 13, the program jumps to the subroutine after the return address in
R11 has been specified. In the subroutine, the program finally returns to the main
program by loading the value for R11 to the program counter (R15).

The LINK instruction is used in the GSU for specifying the return address. LINK
adds a value from 1 to 4, depending upon the operand, to the address of the in-
struction following LINK. The result is stored in R11.

(Example 14)

The call side of the routine in Example 13 can be rewritten as follows using the
LINK instruction.

A000 94 LINK #4 ;R11=A005
A001 FF 03 A1 IWT R15,#SUB1 ;Jump to SUB1
A004 01 NOP

AQ05 DO RETURN: INC RO ;Return Address
CACHE RAM

A 512-byte instruction cache is built into the Super FX. Because instruction code
is read six times as fast as reading from game pak ROM or RAM, a program in
cache RAM runs at high speed. If a program is run in cache memory, access to
the game pak ROM or RAM can be performed at the same time the instruction is
executed. Therefore, a program can be executed at a higher speed.

6.8.1 USING CACHE INSTRUCTIONS

The CACHE instruction is used to control the cache. If the CACHE in-
struction is executed, any subsequent instruction codes will be sequen-
tially loaded into the cache RAM whether they are loaded from game pak
ROM or game pak RAM.

For instance, if the CACHE instruction is executed immediately prior to
loop processing, the program can be made to operate in the cache RAM
beginning with the second repetition.

Program loops exceeding 512 bytes in size will not perform efficiently
since the portion not handled in cache RAM will always be executed in
game pak ROM or game pak RAM. Dividing the program into several
loops so that the loops fit within the 512 byte limit will enable higher
speed operation when the CACHE instruction is executed immediately
prior to these loops.

2-6-9

INSTRUCTION EXECUTION

]

6.8.2

CACHE OPERATION

When the CACHE instruction is executed, the beginning address for data
to be loaded from game pak ROM or RAM to cache RAM is stored in the
CBR (cache base register). The cache area will be 512 bytes beginning
with the address stored in the CBR. The 512-byte cache area is further
divided into 32 blocks of 16 bytes each. A “cache flag” is assigned to
each of these 32 blocks.

When the program counter indicates the cache area, the cache flag that
corresponds with that address is read. If the cache flag is not set, the in-
structions are loaded to cache RAM while the program executes in game
pak ROM or RAM. The cache flag is set when the 16-byte block has been
entirely loaded with instruction code. If the cache flag has already been
set, the program is executed in cache RAM. The cache flags are all reset
when the CACHE instruction is executed.

Since the low 4 bits of the CBR are fixed at 0, the beginning address
stored in the CBR after execution of a CACHE instruction will be the val-
ue of the address following the CACHE instruction with its low 4 bits set
to 0 (XXXOH). If the low 4 bits of the address following the CACHE in-
struction are other than 0, the program jumps to the address in the CBR
and loads the code from the game pak ROM or RAM into the cache RAM,
after the CACHE instruction is executed.

If a branch occurs before all 16 bytes of instruction code in a block can be
loaded (before the cache flag is set), the program will branch after the re-
maining instruction code in that block has been entirely loaded. This op-
eration is the same within the same block. If the program has branched to
an address other than the block header address (XXX0H), the code be-
tween the block header address and the branch address will be loaded
before the instruction at the branch address is executed. Refer to the il-
lustration on the following page.

2-6-10

SNES DEVELOPMENT MANUAL

XXX0H

XXXFH

YYYOH

T~

Game Pak ROM or RAM

Branch Statement

N\

&

Branch Destination

YYYFH

/‘\/

-4

After loading N into the
cache, the program will

branch.

After loading [into the
cache, the program will
execute the branch
destination instruction..

|

Figure 2-6-1 Load to Cache RAM While Branching

Since the CBR does not have any bank information, when an LUMP in-

struction is executed, all cache flags are cleared and the CBR is reset to
a value with the low 4 bits of the jump destination address at 0 (XXXO0H).
This operation is the equivalent of executing another CACHE instruction.

In addition, when the Super NES CPU writes a 0 to the GO flag of the

GSU's status/flag register (a forced end if the GSU is operating), all of the
cache flags are cleared and the CBR value is set to 0000H. If the GSU is
stopped by a STOP instruction, the contents of the CBR, cache flags and
cache RAM are all saved. Consequently, when the GSU is restarted, a 0

must be written to the GO flag to reset the CBR and cache flags.

2-6-11

INSTRUCTION EXECUTION

J

6.8.3

6.8.4

CACHE RAM ACCESS FROM THE SUPER NES

It is possible for the Super NES CPU to read and write to the GSU's
cache RAM. The cache RAM is divided into 512-byte addresses from
3100H in any of banks 00H~3FH or 80H~BFH in the Super NES memory
map. When the GSU is not operating, data can be freely read and written
from/to the Super NES CPU.

However, the CBR does not necessarily comply with address 3100H in
the Super NES memory map. Caution should be observed when reading
cache memory contents after the CACHE instruction has been executed.
The address in the CBR cache RAM complies with the address indicated
by the value of the low 9 bits of the CBR. Therefore, the CBR address on
the Super NES is calculated as follows.

CBR address on Super NES = 3100H + (CBR AND 01FFH)

When cache data is loaded from the CBR complied address to 32FFH,
continuous data is loaded from 3100H to the CBR complied address mi-
nus 1.

For example; when the CBR is C3A0H,
Instruction Memory Address ~ Super NES Complied Address

C3A0H~C3FFH 32A0H~32FFH
C400H~C59FH 3100H~329FH

When writing data from Super NES CPU to cache RAM, instructions
must be written in 16-byte blocks. If data are written only part way
through the 16 bytes, the flag will not be set for that block. In this case,
the GSU will process as though cache data did not exist in that block. To
set the cache flag, write any data to the XXXFH address of that block.

GSU EXCLUSIVE OPERATION IN CACHE RAM

By activating the GSU after code has been written from the Super NES
CPU to the cache RAM, it is possible to operate the program exclusively
in cache RAM. The CBR value is stored from the Super NES CPU by re-
setting the GO flag. This causes the CBR value to become 0000H. The
program addresses in cache are normally 0000H through 01FFH, so the
GSU is activated with addresses in this range stored in the program
counter.

Please be aware that, even when a STOP instruction is executed, the
next code has been loaded into the pipeline. If the address of the STOP
instruction is XXXFH, the GSU will try to read code from external RAM
unless the cache flag for the block containing the next address (XXX0H)
has been set.

2-6-12

SNES DEVELOPMENT MANUAL

= 1
Chapter 7 Data Access
7.1 GAME PAK ROM DATA

The GSU uses a function called the “ROM buffering system” as a method of load-
ing data from game pak ROM during program execution. Using the ROM buffering
system, register R14 is assigned as the address pointer to game pak ROM. When
a value is set in register R14, the game pak ROM data at the address specified by
ROMBR and register R14 are loaded to an internal buffer called the “ROM buffer”.

711

GSU PROGRAM RUNNING IN CACHE RAM OR GAME PAK RAM

When the program is running in cache RAM or game pak RAM, game
pak ROM data can be loaded in parallel with the execution of instructions.
Therefore, it is most efficient to sandwich several instructions between an
instruction that changes R14 and a GETB instruction.

Care is required when performing the following operations while data are
being loaded into the ROM buffer.

» If the value for R14 is updated, the initial loading process is interrupt-
ed and a new loading process is started.

* If a ROMB instruction is fetched, the program will wait until the data
are loaded into the ROM buffer. The ROMBR value will be changed
after data is loaded and program execution will resume.

» If a GETB or similar instruction is fetched, the program will pause
while the data is loaded into the ROM buffer.

In the following examples, it is presumed that the program is being exe-
cuted in cache RAM and bit 0 of the CLSR is “1” (Super FX operating fre-
quency is 21.4 MHz).

CAUTIONS

If cache instructions are executed immediately after the value is set at
R14, while the program is running on cache RAM, the proper value is not
read to the ROM buffer. Please use caution when reading data from
ROM.

* During 21.7 MHz operation, do not insert a CACHE instruction during
the first 7 machine cycles after an instruction that changes the content
of R14.

* During 10.7 MHz operation, do not insert a CACHE instruction during
the first 4 machine cycles after an instruction that changes the content
of R14.

2-7-1

DATA ACCESS

]

(Example 1)
Cycle Instruction Comment
2 MOVE Ri14,R1 ;Start Fetching
5 GETB ;Get The Byte Into RO
1 TO R1
1 FROM R2
1 ADD R3 ;Perform R1=R2+R3
1 TO R4
1 FROM R5
1 ADD R6 ;Perform R4=R5+R6
1 ADD R8 ;RO=R0+R8

Fourteen cycles are required to execute the program in the previous ex-
ample. Since RO is not used until the last instruction, the GETB instruc-
tion can be moved to the line before “ADD R8”, as demonstrated below.

(Example 2)
Cycle Instruction Comment
2 MOVE R14,R1 ;Start Fetching
1 TO R1
1 FROM R2
1 ADD R3 ;Perform R1=R2+R3
1 TO R4
1 FROM R5
1 ADD R6 ;Perform R4=R5+R6
1 GETB ;Get The Byte Into RO
1 ADD R8 ;RO=R0+R8

7.1.2

Only 10 cycles are required to execute this program. Read timing for
game pak ROM access is as follows.

* Operating frequency 21.4 MHz: 5 cycles
* Operating frequency 10.7 MHz: 3 cycles
GSU PROGRAM RUNNING IN GAME PAK ROM

When the GSU program is running in game pak ROM, it is necessary to
use the ROM buffering system even when loading game pak ROM data.
The instruction following a change in register R14 will not begin execution
until the ROM buffer is loaded.

2-7-2

SNES DEVELOPMENT MANUAL

7.2

GAME PAK RAM DATA

The GSU uses a function called the “RAM buffering system” as a method of load-
ing data from game pak RAM during program execution. Using the RAM buffering
system, the game pak RAM address and data to be written are moved to an inter-
nal buffer. The operation of writing to RAM is started by executing a STB, STW,
SM, SMS, or SBK instruction.

7.21 GSU PROGRAM RUNNING IN CACHE RAM OR GAME PAK ROM

When the program is running in cache RAM or game pak ROM, its write
data will be written to game pak RAM while the subsequent program is
being executed. Therefore, it is most efficient to sandwich several instruc-
tions between STW instructions.

Care is required when performing the following operations while writing to
game pak RAM.

* Execution of a command that updates the register which was used as
the address in a STB or STW instruction will have absolutely no effect
on the write operation to game pak RAM and will not wait.

* Ifa RAMB instruction is fetched, the program will wait until the data
are written to game pak RAM. The RAMBR value will be changed af-
ter the write is completed and execution of the program will resume.

* Ifa STW instruction is fetched, the program will wait until the data are
written to game pak RAM.

In the following examples, it is presumed that the program is being exe-
cuted in cache RAM and bit 0 of the CLSR is “1” (Super FX operating fre-
quency is 21.4 MHz).

(Example 3)
Cycle Instruction Comment

1 FROM R8s ;Store R8 Into (R10)
1 STW (R10)

10 STW (R11) ;Store RO Into (R11)
1 TO R1

1 FROM R2

1 ADD R3 ;Perform R1=R2+R3
1 FROM R5

1 ADD R6 ;Perform RO=R5+R6

2-7-3

DATA ACCESS

7.3

Seventeen cycles are required to execute the program in the previous ex-
ample. Since the value for R0 is not changed until the last instruction, the
second STW instruction can be moved to the line immediately before that
instruction. This is demonstrated on the following page.

(Example 4)
Cycle Instruction Comment
1 FROM R8
1 STW (R10) ;Store R8 Into (R10)
1 TO R1
1 FROM R2
1 ADD R3 ;Perform R1=R2+R3
7 STW (R11) ;Store RO Into (R11)
1 FROM R5
1 ADD R6 ;Perform RO=R5+R6

Only 14 cycles are required to execute the program in Example 4. This is
more efficient that Example 3, a wait period of 2 cycles is still required to
write to game pak RAM.

722 GSU PROGRAM RUNNING IN GAME PAK RAM

When the GSU program is running in game pak RAM, it is necessary to
use the RAM buffering system described above even when writing game
pak RAM data. The instruction following a STB or similar instruction is ex-
ecuted after completion of the write operation to game pak RAM.

BULK PROCESSING

Normally during bulk processing, data are loaded from game pak RAM, some pro-
cessing is performed, and a process is executed to return the data to the same
address. Waste can be avoided if the process can be completed without having to
specify the address in RAM a second time.

When an instruction that performs a data transfer between the game pak RAM
and an internal register is executed in the GSU, the game pak RAM address used
in that instruction will be stored in memory. The SBK instruction stores the RAM
address in which the register contents are stored. Since it does not require an op-
erand, it can be executed more quickly than the SM or SMS instructions. The dif-
ference is demonstrated in the following two examples.

2-7-4

SNES DEVELOPMENT MANUAL
[-

(Example 5)

In the following example the SBK instruction is not used. In this case, word data
have been read from game pak RAM address 1234H, the register contents are in-
cremented, and again written to 1234H.

Cycle Instruction Comment
14 LM RO,(1234H) ;R0«(1234H)
1 INC RO ;RO<RO0+1
4 SM (1234H),R0 ;(1234H)«R0

Nineteen cycles are required to execute the above program. If the SBK instruction
is used, the following occurs.

(Example 6)
Cycle Instruction Comment
14 LM RO,(1234H) ;R0«(1234H)
1 INC RO ;RO<—RO0+1
1 SBK ;(1234H)«—R0

In this example, only 16 cycles are required. The memory required to handle the
program is also decreased.

2-7-5

GSU SPECIAL FUNCTIONS

L

J

Chapter 8 GSU Special Functions

The GSU performs various special functions to realize high-speed operations. These
functions are described below.

8.1

BITMAP EMULATION

Since a character mapping system is used with the Super NES PPU, its CPU can
not efficiently perform processing such as; placing a point, drawing a line or paint-
ing a plane (bitmap graphics). Prior to display on the screen, this data must be
converted to character data. Thereby, emulating the bitmap data.

The GSU is equipped with functions that support “Plot Processing”. These func-
tions, “place a point of a specified color at a specified coordinate position.” Conse-
quently; after setting the screen mode (CMODE instruction), the color data
(COLOR, GETC instructions), and the X,Y coordinates; the PLOT instruction is
performed.

In this manner, the GSU converts plotted (bitmapped) data to character data
which can be utilized by the Super NES PPU and writes them to game pak RAM.
In order to be displayed on screen, character data produced in the game pak RAM
must be transferred by the Super NES CPU to the V-RAM of the Super NES.

8.1.1 SET SCREEN MODE

To begin GSU plot processing, screen mode assignments must be made.
This is performed using the screen mode register (SCMR) and the screen
base register (SCBR). The plot options are assigned using the CMODE
instruction.

8.1.1.1 SCREEN MODE REGISTER (SCMR)

The GSU conversion process from bitmapped data to charac-
ter data requires a screen mode selection. This determines
how the characters will be aligned and the bit mode to be used.
This is performed by assigning a mode to the SCMR using the
Super NES CPU.

The GSU has 4 modes. A BG character array may be selected
with screen heights of 128 dot, 160 dot and 192 dot. The fourth
mode is an OBJ character array.

The character data conversion processing by the GSU is per-
formed assuming that the character array is aligned as demon-
strated in the following figures for BG 128 dot, BG 160 dot, BG
192 dot, or OBJ; respectively. Consequently, when the con-
verted data are used as BG or OBJ character data for the Su-
per NES, it is necessary to assign the screen mode and store
the screen data in the VRAM.

2-8-1

SNES DEVELOPMENT MANUAL

b

256 DOT

-’ ot
Alooojot0o20 ¢ ¢ °_*_|1F0
001{011]021] ¢ o s o |11
002/012{022 &« o « o |1F2

128 o | . e e e o o | o |
DOTE . i ° i o: o o SC Data L E ® i
i ° : ° : ° E o e e o : ° :
vlooF[otF[o2F « « e o [HFF

Figure 2-8-1

128 Dot High BG Character Array (numbers are hexadecimal)

256 DOT
-— -
Alooo|o14[028] ¢ « °_*_|26C
001{015{ 029 ¢ « e e |26D
002{016{02A « & « o |26E
1601 o | o ! o1 o o o o o
DOTE.E.:.:.. SC Data « o 1o
: . : ° : oi e o o o : . :
yloiajoz7fosBl « « .. J2FF
Figure 2-8-2 160 Dot High BG Character Array (numbers are hexadecimal)

| 256 DOT
e B ——————————— A ————— >
dlooojotgloso] »+ ¢ . e ToFg
001019031 ¢ » o *_|2E9
002/01A[032] « o o, |2EA
192 | o | o ;e e o © o | |
poT! . ! i SC Data o
| o |) : [: [] [] ¢ ¢ I * :
E o | o | o o o * o E o |
ylo17[o2F[o47] « o« T « o [2FF

Figure 2-8-3

192 Dot High BG Character Array (numbers are hexadecimal)

2-8-2

GSU SPECIAL FUNCTIONS

]
256 DOT

- -
A{ooo| 001)002| ¢ o e o |OOF[100| » » o |10F
010|011/ 012] o o o o |OIF|110] o o e o |11IF

020} 021| 022 e o °« o 02F|120 e o o o 12F

: . : . : o/ o @ o o : ° : ° : o o o o : ° :

[l | | ! ' . SC Data ! !

[! e 1 e, o o e o | o e I o e ! o

] : : ! I] : ' :

I e (o |, o : o o e o ! o | & ; & @ e o | e

I | | |

056 | [OFO[OF1[OF2[« & 77" o o [OFF[1F0] ¢ o « o |IFF
DOT| | 200| 201 202 ¢ .+ ¢ o 20F|300 ¢ & ¢ o 30F
210} 211| 212 o e e 21F|310 e o e 0 31F

220} 221| 222 ° o o o 22F|320 e o °* o 32F

: ° : Y : e o o o . i . e o o o : ® !

| f | ! i | '

: e | & o o o o o e | o o o e o | o

I | | ! | | :

1 e e | el e e o o e ., o o o e o | o
vl2rol2F12r2] « &7 e o |2FF[3F0| & o o ¢ |3FF

Figure 2-8-4 OBJ Character Array (numbers are hexadecimal)

To calculate the total number of bytes of character data re-
quired, the following formula is derived from the bit mode and
the screen height and width.

Total number of bytes of character data =
(Number of dots high/8)

Number of vertical
characters

8.1.1.2 SCREEN BASE REGISTER (SCBR)

]

X (Number of dots wide/8)
[Number of horizontal

characters

X (8n)

Number of
bytes/char

Where n equals the number of bits per dot (2,4, or 8).

The start address of the area in game pak RAM where charac-
ter data will be handled must be assigned in advance from the

Super NES CPU. This information is stored in the SCBR.

The start address is calculated using the following formula.

(Start Address) = 70:0000H+SCBRx400H

2-8-3

SNES DEVELOPMENT MANUAL

8.1.2

8.1.3

For example, when the value 11H is stored in the SCBR, in 4-
bit mode, with a height of 128 dots, width of 192 dots;

(Start Address) = 70:0000H+11Hx400H = 70:4400H

(Total number of bytes of character data)
= (128/8)x(192/8)x(8x4) = 3000H

game pak RAM addresses 70:4400H through 70:73FFH are
used for the character data area.

8.1.1.3 CMODE INSTRUCTION

The CMODE instruction must be stored in the plot option regis-
ter (POR) to enable the PLOT instruction and COLOR or
GETC instructions to be selected. The relationship between
plot processing and the CMODE instruction is covered in more
detail under “Plot Function and CMODE?”, later in this chapter.

SET COLOR (COLOR, GETC)

The color data used in plot processing must be stored in the GSU’s color
register (COLR) using the COLOR instruction or the GETC instruction. If
the COLOR instruction is used, the value for the source register is stored,
while the GETC instruction stores the value for the ROM buffer.

PLOT PROCESSING (PLOT)

The PLOT instruction plots the color data, stored by the COLOR or GETC
instruction, to the X and Y coordinates stored in general registers Ry and
Ro. The X coordinate value must be in Ry and the Y coordinate value in
R,. Color data plotted by the PLOT instruction are converted to character
data and written to the game pak RAM.

Since it would be inefficient to perform a direct write to game pak RAM for
each PLOT instruction, caching is performed in an 8-bit (1 pixel) x 8-bit
memory inside the GSU. This corresponds with the 1 vertical pixel x 8
horizontal pixel blocks into which the screen is divided. This memory is
called the “pixel cache” and the blocks that are cached are called “char-
acter blocks”.

There are two pixel cache memories in the GSU. The color data pro-
duced by the PLOT instruction is cached in the “primary pixel cache.”
These data are copied to the “secondary pixel cache,” then written from
the “secondary pixel cache” to game pak RAM. Each pixel cache has an
8-bit flag called the primary and secondary bit-pend flags. These indicate
whether or not the color data in each pixel cache is valid.

2-8-4

GSU SPECIAL FUNCTIONS

]

When the PLOT instruction is executed, the offset address of game pak
RAM where color data are written is calculated from the value in bit 7
through bit 3 of the X coordinate (R4) and the value in bit 7 through bit 0
of the Y coordinate (R,). These values are held in the GSU. When anoth-
er PLOT instruction is executed, the GSU compares the new coordinate
values to those stored. If the coordinates have not changed, plotting is
performed to the same character block (stored in secondary cache) is
written to game pak RAM.

The flow of GSU plot processing will be demonstrated below using two
cases. In the first description, the character block which was stored by
the previous PLOT instruction is to be written. The second case demon-
strates plotting to a different block.

8.1.3.1 PLOTTING TO SAME CHARACTER BLOCK

Color data are written to the pixel cache and the corresponding
bit-pend flag is set. When all of the bit-pend flags are set (all 8
pixels of the cache block have been written), write processing
to game pak RAM is performed in the following manner.

First, the contents of the primary pixel cache and the primary
bit-pend flag are transferred to the secondary pixel cache and
secondary bit-pend flag. If the contents of the secondary pixel
cache are in the process of being written to the game pak
RAM, this process is placed in WAIT status until the secondary
pixel cache is empty.

After transfer processing, all of the primary bit-pend flags are
cleared. Then the GSU executes the instruction following the
PLOT instruction. Since the primary pixel cache can be used,
the next instruction could be a PLOT instruction without requir-
ing a WAIT status. Parallel with the execution of the next in-
struction, the GSU converts the color data in the secondary
pixel cache into character data and writes them to the game
pak RAM.

8.1.3.2 PLOTTING TO A DIFFERENT CHARACTER BLOCK

The contents of the primary pixel cache and the primary bit-
pend flag are transferred to the secondary pixel cache and sec-
ondary bit-pend flag. If the contents of the secondary pixel
cache are in the process of being written to the game pak
RAM, this process is placed in WAIT status until the secondary
pixel cache is empty. Thereafter, color data are written to the
primary pixel cache and the corresponding bit-pend flag is set.

The GSU then executes the instruction following the PLOT in-
struction. Parallel with the execution of this instruction, the
GSU converts the color data in the secondary pixel cache to
character data and writes it to game pak RAM.

2-8-5

SNES DEVELOPMENT MANUAL

The data in the corresponding character block are read from
the game pak RAM and converted back, while the color data
correspond with the flags which are not set in the secondary
bit-pend flag are set in the secondary pixel cache. The GSU
then converts the color data in the secondary pixel cache into
character data and writes them to the game pak RAM.

Thus, the operation of writing to game pak RAM using two pixel
caches can be performed in parallel with the execution of in-
structions, making PLOT processing very efficient. In addition,
since the PLOT instruction increments the value for R1 after
processing, there is no need to specify coordinates when writ-
ing the pixels continuously toward the right.

CAUTION

Do not change the setting of the screen mode, described under
“Set Screen Mode,” during plot operations. Also, when screen
plot processing is completed, execute the RPIX instruction to
write all of the data contained in the pixel caches to the game
pak RAM.

(Example 1)

The following program is executed under the following condi-
tions.

SCBR=00H, Color Mode=256, and Screen Mode=BG 128
dot high

IBT R1,#0
IBT R2,#0 ;Set the plot starting coordinate to (0,0)
IBT RO,#0

CMODE

:Reset POR

IBT RO,#15H

COLOR
PLOT
PLOT
PLOT

;Load 15H to the color register

;Plot (0,0) through (2,0)

IBT RO,#36H

COLOR
PLOT
PLOT
PLOT
PLOT
PLOT

;Load 36H to the color register

;Plot (3,0) through (7,0)

2-8-6

GSU SPECIAL FUNCTIONS

—

IBT

COLOR

PLOT
PLOT
PLOT
PLOT
IBT

PLOT

The primary pixel cache becomes the cache RAM for the char-
acter block from coordinates (0,0) through (7,0). When the pro-
gram is executed, the following values are stored in the primary
pixel cache and the primary bit-pend flag.

Primary Bit-pend Flag
1/1/1/1/1/1/1/1

GAME PAK
RAM ADDRESS
/0/0/0/0/0/0/0/0

/0/0/0/0/0/0/0/0 ;
Primary /0/0/0/1/1/71/1/1 ogo ggggga
Pixel ~ /1/1/1/1/1/1/1/1//5F (70:0021)
Cache /0/0/0/0/0/0/0/0/|/ (70:0020)
L1660 — (70:0011)
VAVAVAYAVAVAVAVEY ;- (70:0010)
1/1/1/0/0/0/0/0 V/1F (700001)
E0 (70:0000)

15/15/15/36/ 36/ 36/ 36/ 36

Since all 8 pixels in a character block are set with the final
PLOT instruction, they are transferred from the primary pixel
cache to the secondary pixel cache and the game pak RAM
write begins. This process clears the primary bit-pend flags and
the primary pixel cache is released.

(Example 2)

Continuing from Example 1, the following program is executed.

RO,#4AH

;Load 4AH to the color register

;Plot (8,0) through (11,0)

R1,#10H ;Change X coordinate to 16

:Plot (16,0)

2-8-7

SNES DEVELOPMENT MANUAL

L

The primary pixel cache becomes the cache for the character
data from coordinates (8,0) through (15,0). Immediately after
the 4th PLOT instruction is executed, the primary pixel cache
and primary bit-pend flags are as shown below.

Primary Bit-pend Flag
1/1/1/1/0/0/0/0

Since the last PLOT instruction writes to a different character block, RAM
write processing is performed. First, a transfer is performed from the pri-
mary pixel cache and primary bit-pend flag to the secondary pixel cache
and secondary bit-pend flag. Then, game pak RAM write processing is
performed, but the pixels in the secondary pixel cache which have not
been plotted are written after a game pak RAM read operation has been

2-8-

8

executed.
GAME PAK 1/1/1/1/1/1/1/1
RAM ADDRESS
/0
(70:00B1) Fo/ 1/ (70:00B1)
(70:00B0) 60 L0/ 0 (70:00B0)
(70:00A1) B0 L 0/0/0/0/ (70:00A1)
(70:00A0) FFZ1/1/ (70:00A0
(70:0091) Fo LO/0/0 (70:0091)
(70:0090) _Fo VLA (70:0090)
(70:0081) _Ee (70:0081
(70:0080) _Eo (70:0080%
4A/ 4A/ 4A/ 4A/ 10/ 12/ 12/ 10

GSU SPECIAL FUNCTIONS

]

8.1.4

8.1.3.3 RPIXINSTRUCTION

The RPIX instruction reads the character block containing the
specified coordinates from game pak RAM into the pixel cache
and performs processing to calculate the pixel values after the
contents of the pixel cache have been written to the game pak
RAM. When the screen drawing routine is complete, it is advis-
able to execute the RPIX instruction to insure that all of the
PLOT data have been written.

If consecutive RPIX instructions are executed, game pak RAM
read data processing will always be performed because the in-
struction does not discern whether or not there are color data
at the specified coordinates in the pixel cache.

CAUTION

Even when consecutive RPIX instructions read color data from
the same character block, data will always be read from the
game pak RAM.

PLOT FUNCTION AND CMODE

The CMODE instruction is used to determine how the color register value
will be handled by the PLOT instruction. The modes which can be speci-
fied with CMODE are shown in the table below.

BIT|Flag Name | Operation Operation Related
when 0 when 1 Instructions
0 |Transparent| Do not PLOT PLOT color0 |PLOT
Flag color 0
1 | Dither Flag | PLOT value AlternateIK PLOT
of low 4 PLOT high 4
bits of color bits and low
register 4 bits of
color
register
2 | High Nibble iSet Xatl)ute of Eethvzlg_? of COLOR,
ow 4 bits i its
Flag in color ingcolor GETC
register register
3 |Freeze High| Setall 8 Set only low COLOR,GETC,
Nibble Flag | bits in 4 bits in PLOT
color color
register register with
high 4 bits
fixed
4 | OBJ Mode Set mode OBJ mode PLOT,RPIX
Flag with SCMR
(ht0,ht1)
Table 2-8-1 Functions of CMODE

2-8-9

SNES DEVELOPMENT MANUAL

L i

The PLOT instruction is related to bit 3, but it is also used during PLOT
processing for selecting the number of bits to be used (0=8 Bit, 1=4 Bit)
for transparent processing.

8.1.4.1

8.14.2

BITO

The Super NES has multiple hardware BG screens. When one
BG screen is laid over another BG screen, the 0 portions of the
color in the top BG screen become “transparent” and the colors
of the bottom BG are displayed. The GSU uses color mode 0 to
perform this function.

When Bit 0=0 and all of the effective COLR bits are 0, the
PLOT circuit refreshes only the X coordinate and no PLOT op-
eration is performed. Normal PLOT operation is performed for
anything other than 0.

BIT 1

When the number of colors that can be displayed at once is low
(16 color mode), techniques can be used to apparently in-
crease the number of colors through dither processing. The
GSU is able to process this with extreme ease. The example
below demonstrates the difficulties encountered when this
function is not used.

(Example 3)

Routine for drawing a horizontal line of a specified length from
a specified coordinate using two alternating specified colors.

R1:Start X position
R2:Start Y position
R3:Color 1
R4:Color 0
R12:Line length

MOVE R13,R15 :Set LOOP return address.

:LOOP return address

DOPLOT:

FROM R1

XOR R2

AND #1 ;Execute [RO=(R1 XOR R2)And 1].

BNE DOPLOT

FROM R3 ;When not zero, set R3 (color 1) to Sreg.
FROM R4 ;When zero, set R4 (color 0) to Sreg.
COLOR ;Set value of Sreg in COLR.

PLOT

LOOP

NOP

2-8-10

GSU SPECIAL FUNCTIONS

Thus, if only the plotting functions are used, it takes time to de-
termine which of the two colors to PLOT at a specified time.
The bit 1 dither flag may be used to efficiently perform this type
of drawing process. The dither mode is only functional in 4 col-
or mode and 16 color mode.

When dither mode is set, the PLOT circuit checks the bit 0 val-
ue of the result when an XOR operation is performed on R1 (X
coordinate) and R2 (Y coordinate). If the resultant bit 0=0, the
low 4 bits of the COLR register are used as the color data for
the PLOT instruction. However, if the resultant bit 0=1, the high
4 bits of the COLR register are used.

When the program in the previous example is written using the
CMODE instruction, only the PLOT instruction is looped, as
demonstrated below.

(Example 4)

IBT RO,#2

CMODE ;Set to transparent and dither mode.
FROM RS3

ADD R3

ADD RO

ADD RO

ADD RO ;Shift low 4 bits of COLORT1 to high 4 bits.
ADD R4 ;Add value of R4 (COLORO) to RO.
COLOR ;Set COLR.

MOVE R13,R15

:LOOP return address

8.1.4.3

LOOP
PLOT ;Plot pixel.

Since the processing to determine whether or not a color is
transparent is performed in parallel with the generation of plot
data, dithering cannot be performed between a transparent col-
or and a normal color. This mode can also be used in the 4 col-
or mode.

BIT 2

To efficiently perform rotation/enlargement/reduction of OBJ
data, a system is used in which each pixel of color data is
stored at one address. When displaying a 16 color OBJ, half of
the memory is wasted using this method. Memory may be con-
served by storing two pixels of color data together in one byte.
However, this requires a method for extracting two pixels of
color data from one byte of data. Bit 2 of CMODE is used by
the GSU to perform this function.

2-8-11

SNES DEVELOPMENT MANUAL

L

8.1.44

8.1.45

When the COLOR or GETC instruction is executed with bit 2 of
CMODE set, the high 4 bits of the source register are written to
the color register. If different OBJ data are stored in the high 4
bits and low 4 bits of the same memory area, this function per-
mits the packed 8-bit data to be used without shift processing.
This mode can also be used in 4 color mode.

BIT 3

If the COLOR or GETC instruction is executed in 256 color
mode with bit 3 of CMODE set, only the low 4 bits of the COLR
register can be written to the color register. The high 4 bits are
fixed. This function enables the high 4 bits of the color register
to be used in place of a palette in 256 color mode. In other
words, characters of different colors can be drawn by plotting
16 color mode data while changing the value of the high 4 bits
of the color register.

BIT 4

When bit 4 of CMODE is set, the mode which enables charac-
ter data to be produced for OBJ. When this bit is 0, the mode is
specified by HTO,HT1 of the SCMR. When switching the OBJ

mode by changing this bit, it will be necessary to use the RPIX
instruction to write the data to the game pak RAM which have

already been written to the pixel caches.

2-8-12

GSU SPECIAL FUNCTIONS

PLOT instruction processing:

COLOR Instruction Generates plot data

for the COLOR instruction,
ROM buffer value for GETC
instruction.

Z[7:4] is a symbol that
shows the data in bit 7
through bit 4 of Z.

PLOT Instruction Processing
Transparent Mode Processing

GETC Instruction COLOR
e Fom==— == —a
" Write inhibited i i REGISTER |
| by Bit 3 | N |
2[7:4] i AN E > COLRWA}E ¢ ;>COLOR[7:4]
: i | :
! T et I - .
| 1 I : :
Z[3:4] —f—» 0 L 10 || g COLOR[3:0]
! SELECT ! ! SELECT E
} : ! .
; | 4/16 Color ! !
: | Mode : !
__________________ | :
[fi——
'@ l
I
Z is the source register I
I
|

Bit 0 —{ In transparent mode (Bit0=0)
When COLR][1:0] are all 0

SCMR in 4 color mode PLOT
Color Mode[™ When COLR([3:0] are all 0 Enable/Disable
When COLR][7:0] are all 0 — >

Bit 3 —— When Bit 3=0 in 256 color mode

When COLR[3:0] are all 0

COLRJ[7:0] When Bit 3=1 in 256 color mode
e

PLOT processing not performed

Figure 2-8-5 Plot Operations Assigned by CMODE

2-8-13

SNES DEVELOPMENT MANUAL

[

8.15

PLOT DATA ADDRESS CALCULATION METHODS
The addresses to which plot data are written are determined using the
following data.

* XandY coordinates are specified by the low bytes of Ry and R..
* The screen color mode and height mode are specified by the SCMR.
* SCBR

The following examples demonstrate the method of calculating this ad-
dress. In the calculations below, “X[7:3]" indicates the value of bit 7
through 3 for the value of X. The expression “X4,” indicates the value of
bit 4 for X.

1. Calculate the character number (CN) containing the specified co-
ordinates. CN is the value of SC data in the character arrays previ-
ously described.

(a) Height, 128 Dot Mode
CN [9:0] = (X[7:3] x 10H) + Y[7:3]
X7 X6 X5 X4 X3
Y7 Y6 Y5 Y4 Y3

CN9 CN8 CN7 CN6 CN5 CN4 CN3 CN2 CN1 CNO

(b) Height, 164 Dot Mode
CN [9:0] = (X[7:3] x 14H) + Y[7:3]

X7 X6 X5 X4 X3
X7 X6 X5 X4 X3
Y7 Y6 Y5 Y4 Y3

CN9 CN8 CN7 CN6 CN5 CN4 CN3 CN2 CNi CNO

(c) Height, 192 Dot Mode

CN [9:0] = (X[7:3] x 18H) + Y[7:3]
X7 X6 X5 X4 X3

X7 X6 X5 X4 X3
Y7 Y6 Y5 Y4 Y3

CN9 CN8 CN7 CN6 CN5 CN4 CN3 CN2 CNi CNoO

2-8-14

GSU SPECIAL FUNCTIONS

(d) OBJ Mode

CN [9:0] = (Y[7] X 200H) + (X[7] x100H) + (Y[6:3] x 10H) + Y[6:3]

X7 X6 X5 X4 X3
+Y7 Y6 Y5 Y4 Y3
CN9 CN8 CN7 CN6 CN5 CN4 CN3 CN2 CN1 CNO
2. The addresses to be written to are then calculated as follows.
A[19:0] = (CN[9:0] x CHAR_SIZE)
+ (SBJ[7:0] x 4000H)
+ (Y[2:0] x 2)
+ (PL{2] x 200H) + (PL[1] x 100H) + PL[0]

Where CHAR_SIZE is the number of bytes used for one character.
This is 16 bytes for 4 color mode, 32 bytes for 16 color mode, and
64 bytes for 256 color mode. The expression “PL[2:0] indicates a

plane number. The expression “SB[7:0]” indicates the value stored
at the SCBR. The following examples demonstrate this calcula-

tion.
(a) 4 Color Mode
SB7 SB6 SB5 SB4 SB3 SB2 SB1 SBO
CN9 CN8 CN7 CN6 CN5 CN4 CN3 CN2 CN1 CNO
Y2 Y1 YO
PLO
A1 A18 A17 A16 A15 A14 A13 A12 A1l A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0
(b) 16 Color Mode
SB7 SB6 SB5 SB4 SB3 SB2 SB1 SBO
CN9 CN8 CN7 CN6 CN5 CN4 CN3 CN2 CN1 CNO
Y2 Y1 YO
PL1 PLO
A19 A18 A17 A16 A15 A14 A13 A12 A1l A10 A9 AB A7 A6 A5 A4 A3 A2 A1 AD
(c) 256 Color Mode
SB7 SB6 SB5 SB4 SB3 SB2 SB1 SBO
CN9 CN8 CN7 CN6& CN5 CN4 CN3 CN2 CN1 CNO
Y2 Y1 YO
PL2 PL1 PLO
A19 A18 A17 A16 A15 A14 A13 A12 A11 A10 A9 AB A7 A6 A5 A4 A3 A2 A1 A0

2-8-15

L

SNES DEVELOPMENT MANUAL

8.2

MULTIPLICATION INSTRUCTIONS

The 4 multiplication instructions shown below are available in the GSU.

e MULT Signed 8 bits x Signed 8 bits — Signed 16 bits
instruction Low 8 bits of Low 8 bits of Dreg
Sreg operand
s UMULT Unsigned 8 bits x Unsigned 8 bits — Unsigned 16 bits
instruction Low 8 bits of Low 8 bits of Dreg
Sreg operand
e LMULT Signed 16 bits x Signed 16 bits — Signed 32 bits
instruction Sreg R6 High Dreg Low R4
* FMULT Signed 16 bits x Signed 16 bits — Signed 32 bits
instruction Sreg R6 High Dreg

There is an 8 bit x 8 bit multiplier built into the GSU. Since this multiplier is used
only once with the MULT and UMULT instructions, these instructions can be exe-
cuted at high speed. A 16 bit x 16 bit answer is calculated, for the LMULT and
FMULT instructions, by performing an 8 bit x 8 bit multiplication 4 times.

The execution speed of each multiplication instruction can be changed using bit 5
of the CFGR. Normally, the standard speed mode (bit 5=0) is used. When the Su-
per FX operates at 10.7 MHz (when bit 0 of the CLSR is “0”), the high speed mode
(bit 5=1) can be used.If R4 is specified as the destination register with the LMULT
instruction, the high 16 bits of the operation results are stored in R4.

CAUTION

If R4 is specified as the destination register with the FMULT instruction, the oper-
ation results will not be stored in R4 and the results will be lost. Do not specify R4
as the destination register for the FMULT instruction.

8.21 INTERNAL PROCESSING OF FMULT AND LMULT

For LMULT and FMULT instructions, 16 bit x 16 bit multiplication is per-
formed by repeating an 8 bit x 8 bit multiplication circuit whose signed
and unsigned numbers could both be present 4 times. The processing
flow for the FMULT and LMULT instructions is explained below. The
FMULT and LMULT instructions share the circuit, but notice that there
are processes that can only be performed by the LMULT instruction.

Initially, an 18 bit buffer used to hold the partial results during multiplica-
tion, called the partial product buffer, is cleared.

The first multiplication is performed.
Low 8 bits of Sreg (unsigned) x Low 8 bits of R6 (unsigned)
— 16 bit result (unsigned)

2-8-16

GSU SPECIAL FUNCTIONS

The high 8 bits of the result are stored in the low 8 bits of the partial prod-
uct buffer. For LMULT, the low 8 bits of the result are stored in the low 8
bits of R4.

The second multiplication is performed.
High 8 bits of Sreg (signed) x Low 8 bits of R6 (unsigned)
— 16 bit result (signed)

The result is expanded to 18 bits with the sign and added to the partial
product buffer.

The third multiplication is performed.
Low 8 bits of Sreg (unsigned) x High 8 bits of R6 (signed)
— 16 bit result (signed)

The result is expanded to 18 bits with the sign and added to the partial
product buffer. For LMULT, the low 8 bits of the partial product buffer are
further stored in the high 8 bits of R4.

The fourth multiplication is performed.
High 8 bits of Sreg (signed) x High 8 bits of R6 (signed)
— 16 bit result (signed)

The result (16 bits) is added to the high 10 bits of the partial product buff-
er. For LMULT if the Dreg is R4, the value in the partial product buffer is
stored in R4. If the Dreg is not R4, the value of the partial product buffer is
stored in the Dreg.

If R4 is specified as the destination register for the LMULT instruction
when performing the above processing, the high 16 bits of the operation
result will be stored in R4. However, if R4 is specified as the destination
register for the FMULT instruction, the operation result will not be stored
as the value for R4.

2-8-17

SNES DEVELOPMENT MANUAL

L

Chapter 9 Description of Instructions

This chapter provides a detailed description of each instruction and its function. ROM
and RAM execution times listed for each instruction refer to the game pak ROM and
RAM. Special indicators and symbols are used throughout this chapter. These are de-
fined in the following 3 tables.

9.1 OPERAND DESCRIPTIONS

INDICATOR DESCRIPTION
Ro Indicates internal register Rg.
Rn A 16-bit general use register.
R, A 16-bit general use register.
(Rm) Indicates the value stored in the memory location specified by
the contents of register R,
(xx) Indicates the value stored in the memory location specified by
the 16-bit value xx.
(yy) Indicates the value stored in the memory location specified by
the 9-bit value yy. (0<yy<510)
#n Indicates 4-bit immediate data.
#xx Indicates 16-bit immediate data. (0<xx<65535)
#pp Indicates 8-bit immediate data. (-128<pp<127)
e 1-byte data -128<e<127, that expresses the displacement in
the relative addressing mode.

9.2 FLAG DESCRIPTIONS

SYMBOL

DESCRIPTION

1

Set

0

Reset

*

Set or reset according to results.

No change

2-9-1

DESCRIPTION OF INSTRUCTIONS

i
9.3 OPERATOR FUNCTIONS
INDICATOR DESCRIPTION
Ro Indicates internal register Ry,
Rn, Ry | A 16-bit general use register specified by n.
(Rr) Indicates a value stored in a memory location specified by the
contents of register R,.
(xx) Indicates a value stored in a memory location specified by the
16-bit value xx.
(yy) Indicates a value stored in a memory location specified by the
9-bit value yy.
#n Indicates 4-bit immediate data.
#xx Indicates 16-bit immediate data. (0<xx<65535)
#pp Indicates 8-bit immediate data. (-128<pp<127)
e 1-bit data (-128<e<127), that expresses displacement in the
relative addressing mode.
Sreq Source register
Dreg Destination register
High-Byte | Upper byte of 16-bit data
Low-Byte | Lower byte of 16-bit data
- Indicates direction of movement of data
+ Add
- Subtract
* Multiply
Rn, #n | 1’s compliment
ALTA ALT1 Flag
ALT2 ALT2 Flag
CYy Carry Flag
on Overflow Flag
A Zero Flag
S Sign Flag
B B Flag
GO Go Flag

2-9-2

SNES DEVELOPMENT MANUAL

9.4 ADCR,
Operation: Sreg + Rn + CY Flag — Dyqq (n=0~15)
Description: This instruction adds the source register, the operand, and the

carry flag. The result is stored in the destination register.

Source and destination registers are specified in advance using
a WITH, FROM, or TO instruction. When not specified, these
registers default to Rg.

The operand can be any of registers Ry~Rs.

Flags affected:

B |[ALT1[ALT2| O/NV | S Cy V4
0 O 0 * * * *
B: Reset
ALT1: Reset
ALT2: Reset
ON: Set on signed overflow.
S: Set if result is negative, else reset
CY: Set on unsigned carry, else reset
Z: Set if result is zero.
Opcode:
(MSB) (LSB)
ADC R, ojof(1} 1|1 1] 0| 1| (3DH)
0| 1] 0] 1 n (OH~FH) | (5nH)
Machine Cycles: ROM execution time 6 cycles
RAM execution time 6 cycles

Example:

Cache RAM execution time 2 cycles

ADC R
WITH R,
ADC R
ADC R,

; Rp+R1+CY—>R,
; Set the source/destination registers to R,
; Ro+R3+CY—-R,
, Ro+Ro+CY—>Rg

2-9-3

DESCRIPTION OF INSTRUCTIONS
=]

9.5 ADC #n

Operation: Sreg + #n + CY Flag — Dygq (n=0~15)

Description: This instruction adds the source register, the immediate data
specified by the operand #n, and the carry flag. The result is
stored in the destination register.

Source and destination registers are specified in advance using
a WITH, FROM, or TO instruction. When not specified, these
registers default to Ry,.

The operand can be immediate data from 0~15.

Flags affected:

B [ALT1|ALT2| OV | S CcY y4
O O O * * L3 *
B: Reset
ALT1: Reset
ALT2: Reset
O/V: Set on signed overflow.
S: Set if result is negative, else reset
CY: Set on unsigned carry, else reset
Z: Set if result is zero, else reset.
Opcode:
(MSB) (LSB)
ADC #n o|of 1| 1|1y 1] 1| 1] (BFH)
ol 1| 0] 1 n (OH~FH) | (5nH)
Machine Cycles: ROM execution time 6 cycles
RAM execution time 6 cycles
Cache RAM execution time 2 cycles

Example: ADC #9H ; Rp+0009H+CY—R,

FROM Rj ; Set the source register to Ry
ADC #5H ; R3+0005H+CY—R,
ADC #0AH ; Rg+000AH+CY—R,

2-9-4

SNES DEVELOPMENT MANUAL

9.6 ADDR,
Operation: Sreg + Rn = Dreg (n=0~15)
Description: This instruction adds the source register and the register speci-
fied by the operand R,,. The result is stored in the destination
register.

Source and destination registers are specified in advance using
a WITH, FROM, or TO instruction. When not specified, these
registers default to R,

The operand can be any of registers Ry~Rs.

Flags affected:

B |ALT1|ALT2| O/V | S CY 4
0 0 O * * * *

B: Reset
ALT1: Reset
ALT2: Reset
ON: Set on signed overflow.
S: Set if result is negative, else reset
CY: Set on unsigned carry, else reset
Z: Set if result is zero.
Opcode:
(MSB) (LSB)
ADDR, [O| 1| O 1 n (OH~FH) | (5nH)
Machine Cycles: ROM execution time 3 cycles
RAM execution time 3 cycles

Cache RAM execution time 1 cycle
Example: Under the following conditions:
Sreg: Ros Dreg: Ro, Rg=4283H, R4=2438H
Ry=66BBH when ADD R, is executed.

ADD R, ; RotR4—Rg
TO Rs ; Set the destination register to Rg
ADD Rg ; Ro+Re—Rs
ADD Rj ; Ro+R3—Ry

2-9-5

DESCRIPTION OF INSTRUCTIONS

]

9.7 ADD #n

Operation:

Description:

Steg + #N—> Dieg (n=0~15)

This instruction adds the source register to the immediate data
specified by the operand #n. The result is stored in the destina-
tion register.

Source and destination registers are specified in advance using
a WITH, FROM, or TO instruction. When not specified, these
registers default to R,

The operand can be immediate data from 0-15.

Flags affected:

Opcode:

B |[ALT1|ALT2| O/V | S CcY Y4

O 0 0 * * * *

B: Reset
ALT1: Reset
ALT2: Reset

: Set on signed overflow, else reset.
S: Set if result is negative, else reset
CY: Set on unsigned carry, else reset.
Z Set on zero result, else reset.

(MSB) (LSB)

ADD #n olo[1] 1] 1] 1] 1] 0] 3EH)

o 1| 0] 1 n (OH~FH) (5nH)

Machine Cycles: ROM execution time 6 cycles

Example:

RAM execution time 6 cycles
Cache RAM execution time 2 cycles

Under the following conditions:

Sreg: R4, Dreg; R7, R4=3682H
R is 368AH when ADD #8H is executed.

ADD #8H ; R4+0008H—R;

WITH Ry ;Set the source and destination registers to R,
ADD #2H ; R7+0002H— R~

ADD R7) R0+R7'—9R0

2-9-6

SNES DEVELOPMENT MANUAL

e

9.8 ALT1

FLAG PREFIX INSTRUCTION
Operation: 1 — ALT1 Flag
Description: ALT1 is a prefix instruction used in combination with the instruc-

tion which follows. When ALT1 is executed, the Super FX sets
the ALT1 flag in bit 8 of the status flag register (3030, 3031H).

The ALT1 flag specifies the mode for the next instruction.

Flags affected:
B |ALT1|ALT2| O/V | S CcY y4
- 1 - - - - -
ALT1: Set
Opcode:
(MSB) (LSB)
ALT1 ofo| 1|11 1] 0] 1| (3DH)
Machine Cycles: ROM execution time 3 cycles
RAM execution time 3 cycles
Cache RAM execution time 1 cycles
Example: Execution of the ALT1 instruction sets the ALT1 flag. Various in-

structions can be executed, depending upon the instruction
which follows the ALT1 prefix.

(Refer to, “ALT1 ($3D) +”, in the Super FX Opcode Matrix at the
end of this chapter.)

2-9-7

DESCRIPTION OF INSTRUCTIONS

| A
9.9 ALT2

FLAG PREFIX INSTRUCTION

Operation: 1 — ALT2 Flag

Description: ALT2 is a prefix instruction used in combination with the instruc-

tion which follows. When ALT2 is executed, the Super FX sets
the ALT2 flag in bit 9 of the status flag register (3030, 3031H).

The ALT2 flag specifies the mode for the next instruction.

Flags affected:

B |ALT1[ALT2| O/V | S cY Z
- - 1 - - - =

ALT2: Set
Opcode:
(MSB) (LSB)
ALT2 oo}t 1|11 1] 0| (BEH)

Machine Cycles: ROM execution time 3 cycles

RAM execution time 3 cycles

Cache RAM execution time 1 cycles
Example: Execution of the ALT2 instruction sets the ALT2 flag. Various in-

structions can be executed, depending upon the instruction
which follows the ALT2 prefix.

(Refer to, “ALT2 ($3E) +”, in the Super FX Opcode Matrix at the
end of this chapter.)

2-9-8

SNES DEVELOPMENT MANUAL

9.10 ALT3
FLAG PREFIX INSTRUCTION
Operation: 1 —» ALT1 Flag
1 —» ALT2 Flag
Description: ALT3 is a prefix instruction used in combination with the instruc-

tion which follows. When ALT3 is executed, the Super FX sets
the ALT1 and ALT2 flags in bits 8 and 9 of the status flag register
(3030, 3031H).

These flags specify the mode for the next instruction.

Flags affected:
B [ALT1|ALT2| O/V | S CcY V4
- 1 1 - - - -
ALT1: Set
ALT2: Set
Opcode:
(MSB) (LSB)
ALT3 oo 1] 1} 1] 1] 1 1] (3FH)
Machine Cycles: ROM execution time 3 cycles
RAM execution time 3 cycles
Cache RAM execution time 1 cycles
Example: Execution of the ALT3 instruction sets the ALT 1 and ALT 2

flags. Various instructions can be executed, depending upon the
instruction which follows the ALT3 prefix.

(Refer to, “ALT3 ($3F) +”, in the Super FX Opcode Matrix at the
end of this chapter.)

2-9-9

DESCRIPTION OF INSTRUCTIONS

9.11 ANDR,

Operation:

Description:

Flags affected:

Sreg AND Ry Dieq (n=1~15)

This instruction performs logical AND on corresponding bits of
the source register and the operand R,,. The result is stored in
the destination register.

Source and destination registers are specified in advance using
a WITH, FROM, or TO instruction. When not specified, these
registers default to R,

The operand can be any of registers Ry~Rs.

B |ALT1|ALT2| O/V | S CcY Z

O 0 O - * - *

Opcode:

ADD R,

Machine Cycles:

: Reset
ALT1: Reset
ALT2: Reset

: Set if result is negative, else reset
Z Set on zero result, else reset.

(MSB) (LSB)
ol 1] 1] 1 n (1H~FH) (7nH)

ROM execution time 3 cycles
RAM execution time 3 cycles

Cache RAM execution time 1 cycles

Example:
AND Rg ;R AND Rg — Ry
(163AH) (OOFFH) — (003AH)
FROM Rg ;Set the source register to Rg
TO Rio ;Set the destination register to Ryq
AND Ry ;Rg AND Ry — Ryo

(55AAH) (FFOOH) — (5500H)

2-9-10

SNES DEVELOPMENT MANUAL
B "

9.12 AND #n
Operation: Sreg AND #n— Dreg (n=1~15)
Description: This instruction performs logical AND on corresponding bits of

the source register and the immediate data specified by the op-
erand #n. The result is stored in the destination register.

Source and destination registers are specified in advance using
a WITH, FROM, or TO instruction. When not specified, these
registers default to Ry

The operand can be immediate data from 1~15.

Flags affected:

B |ALT1[ALT2| O/V | S CcY y4
O O 0 - * - *

: Reset
ALT1: Reset
ALT2: Reset

: Set if result is negative, else reset
Z: Set on zero result, else reset.

Opcode: (MSB) (LSB)

ADD #n olol1]1]1] 1] 1] 0] (3EH)
ol 1] 1] 1 n (1H~FH) | (7nH)

Machine Cycles: ROM execution time 6 cycles
RAM execution time 6 cycles
Cache RAM execution time 2 cycles
Example: When register R is, “3E5DH (0011 1110 0101 1101B)”,
AND #6H
will result in,

Ro = “0004H (0000 0000 0000 0100B)”.

2-9-11

DESCRIPTION OF INSTRUCTIONS

]

9.13 ASR

Operation:

Sreg CY
[:;:i._L>--.> e _‘L' —JL» —4L» —JL» -—.—[:]
D15 v DO
Dreg
D15 DO
Description: This instruction shifts all bits in the source register one bit to the

right. Bit 0 goes into the carry flag and bit 15 is unaffected. The
result is stored in the destination register.

Source and destination registers are specified in advance using
a WITH, FROM, or TO instruction. When not specified, these
registers default to Rg.

Flags affected:

B |ALT1|ALT2| O/V | S CcY Y4

0 O O - * * *

B: Reset

ALT1: Reset

ALT2: Reset

S: Set if result is negative, else reset

CY: Set if bit 0 in the source register is “1”,

else reset

Z Set on zero result, else reset.

Opcode: (MSB) (LSB)
ASR 10010} 1]1]0 (96H)
Machine Cycles: ROM execution time 3 cycles
RAM execution time 3 cycles

Cache RAM execution time 1 cycles

2-9-12

SNES DEVELOPMENT MANUAL

Example:

Sreg: R10, Dreg' R1
CY bit15

[o]Ao

Under the following conditions,

bit0
O(1({0jOf1[1|1{1|O|1|1|1|1|0|1|1|(4F7BH)
When ASR is executed, the carry flag and R, are:
bit15 bit0
ojo0|t1|0jOf1|1[1]|1|O[1|{1[1}1]|0|1|(27BDH)

CcYy
Ry

2-9-13

DESCRIPTION OF INSTRUCTIONS

9.14 BCCe

]
Operation: If CY Flag=0
then Ris+e—Ry5 (e=-128 ~+127)
Ry5 identifies the next
address for the BCC
instruction (2 bytes)
Description: If the carry flag is “0”, add “e” to the contents of the program

counter Ry5 and JUMP to the address indicated by the resulting
value in the program counter.

If the carry flag is “1”, do not jump.

The relative offset can be -128 to +127 bytes from the address
following the code for “e”.

If the decision results in a JUMP, the next instruction to be exe-
cuted will already be in the instruction pipeline of the processor.
For this reason one byte from the pipeline will be executed be-
fore the instruction at the branch destination is executed. (The
execution time for this instruction is not included in the machine
cycles listed below.)

Flags affected:

B |ALT1|ALT2| O/V | S cY Z

No flags affected
Opcode:

(MSB) (LSB)
00 0j0}j 1] 1] 0| 0| (OCH)
BCCe | «—— ¢ (OOH~FFH) —— | Relative address
Note: The number “e” (number, label, formula) which shows the jump
destination is given in the assembler as an operand.
Machine Cycles: ROM execution time 6 cycles

RAM execution time 6 cycles
Cache RAM execution time 2 cycles

2-9-14

SNES DEVELOPMENT MANUAL

Example: In the following example, the carry flag is zero and the program
jumps forward 5 bytes from the execution address of the instruc-
tion.

BCC $+5H

The relationship between the program and the program
counter is as follows:

PC ADDRESS Qbject Code

51E 0C (BCC $+5H)

51F 03

23? «PC before jump Execute instruction
522 at address 520 and
523 «PC after jump q— JUMP.

2-9-15

DESCRIPTION OF INSTRUCTIONS

]

9.15 BCSe

Operation: If CY Flag=1
then Ris+e—Rq5 (e=-128~+127)
Ry5 identifies the next
address for the BCS
instruction (2 bytes)
Description: If the carry flag is “1”, add “e” to the program counter Ry5 and
JUMP to the address indicated by the resulting value in the pro-
gram counter.
If the carry flag is “0”, do not jump.
The relative offset can be -128 to +127 bytes from the address
following the code for “e”.
If the decision results in a JUMP, the next instruction to be exe-
cuted will already be in the instruction pipeline of the processor.
For this reason one byte from the pipeline will be executed be-
fore the instruction at the branch destination is executed. (The
execution time for this instruction is not included in the machine
cycles listed below.)
Flags affected:
B [ALT1|ALT2| O/V | S CcY y4
No flags affected
Opcode: (MSB) (LSB)
00| 0|0 1] 1] 0| 1 |(ODH)
BCSe | <«—— e (00H~FFH) — | Relative
address
Note: The number “e” (number, label, formula) which shows the jump
destination is given in the assembler as an operand.
Machine Cycles: ROM execution time 6 cycles

RAM execution time 6 cycles
Cache RAM execution time 2 cycles

2-9-16

SNES DEVELOPMENT MANUAL

Example: In the following example, the carry flag is set and the program
jumps backward 1 byte from the execution address of the in-
struction.

BCS $-1H

The relationship between the program and the program
counter is as follows:

PC ADDRESS Object Code

42D «PC after jump

42E 0D (BCS $-1H)

42F FD:] Execute instruction
430 «—PC before jump at address 430 and
431 jump.

2-9-17

DESCRIPTION OF INSTRUCTIONS

9.16 BEQe

Operation:

Description:

Flags affected:

If Z Flag=1

then R15+e"—)R15 (e: '128~+127)
Ry5 identifies the next
address for the BEQ
instruction (2 bytes)

If the zero flag is “1”, add “e” to the program counter Ry5 and
JUMP to the address indicated by the resulting value in the pro-
gram counter.

If the zero flag is “0”, do not jump.

The relative offset can be -128 to +127 bytes from the address
following the code for “e”.

If the decision results in a JUMP, the next instruction to be exe-
cuted will already be in the instruction pipeline of the processor.
For this reason one byte from the pipeline will be executed be-
fore the instruction at the branch destination is executed. (The
execution time for this instruction is not included in the machine
cycles listed below.)

B [ALT1|ALT2| OV | S CcY Z

Opcode:

No flags affected

(MSB) (LSB)
ol o0lO0|O0|1]0| 0| 1 |(O9H)

BEQe | «—— e(00H~FFH) ——» | Relative

Note:

Machine Cycles:

address

[{pg]

The number “e” (number, label, formula) which shows the jump
destination is given in the assembler as an operand.

ROM execution time 6 cycles
RAM execution time 6 cycles
Cache RAM execution time 2 cycles

2-9-18

SNES DEVELOPMENT MANUAL
Example: In the following example, the zero flag is set and the program

jumps ahead 5 bytes from the execution address of the instruc-
tion.

BEQ $+5H
The relationship between the program and program
counter is as follows:
PC ADDRESS Object Code
15FD

15FE 09
15FF 03 —J (BEQ $+5H)

1600 «PC before jump Execute instruction
1601 at address 1600

1602 -
1603 «PC after jump -w-—— and jump.

2-9-19

DESCRIPTION OF INSTRUCTIONS

Lo]
9.17 BGE e
Operation: If (S XOR O/V)=0
then R15+e—)R15 (e= '128~+127)
R15 identifies the next
address for the BGE
instruction (2 bytes)
Description: If the sign flag and the overflow flag are equal, add “e” to the pro-

Flags affected:

gram counter Ry5 and JUMP to the address indicated by the re-
sulting value in the program counter.

If the values are different, do not jump.

The relative offset can be -128 to +127 bytes from the address
following the code for “e”.

If the decision results in a JUMP, the next instruction to be exe-
cuted will already be in the instruction pipeline of the processor.
For this reason one byte from the pipeline will be executed be-
fore the instruction at the branch destination is executed. (The
execution time for this instruction is not included in the machine
cycles listed below.)

B |ALT1[ALT2| O/V | S CcY Z

Opcode:

BGE e

Note:

Machine Cycles:

No flags affected

(MSB) (LSB)
ojojo0|o0| o] 1| 1] 1 [(O7H)

<«—— ¢ (00H~FFH) —» | Relative
address

The number “e” (number, label, formula) which shows the jump
destination is given in the assembler as an operand.

ROM execution time 6 cycles
RAM execution time 6 cycles
Cache RAM execution time 2 cycles

2-9-20

SNES DEVELOPMENT MANUAL

C

Example: In the following example, the sign flag and over flag are set and
the program jumps backward 3 bytes from the execution address
of the instruction.

BGE $-3H

The relationship between the program and program
counter is as follows:

PC ADDRESS Object Code

22FA

22FB «PC after jump

22FC Execute

gggg 07 instruction at g
address 2300 an

D2FF FB— (BGE$:3H) | S

2300 «PC before jump

2-9-21

DESCRIPTION OF INSTRUCTIONS
B |

9.18 BICR,
Operation: Sreg AND Rn— Dreg (n=1~15)
Description: This instruction performs logical AND on corresponding bits of
the source register and the 1's complement of register specified
in the operand R,,. The result is stored in the destination register.
The source and destination registers are specified in advance
using a WITH, FROM, or TO instruction. When not specified,
these registers default to R,
The operand can be any of registers Ry~Rs.
Flags affected:
B |ALT1|ALT2| OV | S CcYy y4
0 O O - * - *
B : Reset
ALT1 : Reset
ALT2 : Reset
S : Set if result is negative, else reset
z : Set on zero result, else reset.
Opcode: (MSB) (LSB)
o(o|t|1 1] 1] 0| 1| (3DH)
BICR
C PR O 1] 1}1 n (1H~FH) (7nH)
Machine Cycles: ROM execution time 6 cycles

RAM execution time 6 cycles
Cache RAM execution time 2 cycles

Example: Under the following conditions:
Sreg: Ro, Dreg: Ro

R,=75CEH (0111 0101 1100 1110B),
R1=3846H (0011 1000 0100 0110B)

Ro is 4588H (0100 0101 1000 1000B) when

BIC R;
is executed.

2-9-22

SNES DEVELOPMENT MANUAL

9.19 BIC #n
Operation: Steg AND #n—> Dygq (n=1~15)
Description: This instruction performs logical AND on corresponding bits of

the source register and the 1's complement of the immediate
data specified in the operand #n. The result is stored in the desti-
nation register.

The source and destination registers are specified in advance
using a WITH, FROM, or TO instruction. When not specified,
these registers default to R,

The operand can be immediate data from 1~15.

Flags affected:
B |ALT1[ALT2| O/V | S CY 4
0 0 O - * - *
B : Reset
ALT1 : Reset
ALT2 : Reset
S : Set if result is negative, else reset
y4 : Set on zero result, else reset.
Opcode: (MSB) (LSB)
OO0 11| 11| 1|1] (3FH
BIC #
n ol 1| 1(1 | n(@H-FH) | (7nH)
Machine Cycles: ROM execution time 6 cycles
RAM execution time 6 cycles
Cache RAM execution time 2 cycles
Example: Under the following conditions:

Sreg: R4, Dre . Rs
R4= 364BH (0011 0110 0100 1011B)

Rs is 3640H (0011 0110 0100 0000B) when
BIC #F
is executed.

2-9-23

DESCRIPTION OF INSTRUCTIONS

]

9.20 BLTe

Operation: If (S XOR O/V)=1
then Rys+e—Rqs5 (e=-128~+127)
R;s identifies the next
address for the BLT
instruction (2 bytes)
Description: If the sign flag and the overflow flag are different, add “e” to the

program counter Ry5 and read the next instruction at the location
indicated by the resulting value in the program counter.

If the values are the same, do not jump.

The relative offset can be -128 ~ +127 bytes from the address
following the code for “e”.

If the decision results in a JUMP, the next instruction to be exe-
cuted will already be in the instruction pipeline of the processor.
For this reason one byte from the pipeline will be executed be-
fore the instruction at the branch destination is executed. (The
execution time for this instruction is not included in the machine
cycles listed below.)

Flags affected:

B |ALT1|ALT2| O/V | S CcY V4

No flags affected
Opcode: (MSB) (LSB)
0| 0| 0jO0] 0] 1] 1] O [(0BH)
BLT e <«—— ¢ (00H~FFH) ——» | Relative
address
Note: The number “e” (number, label, formula) which shows the jump
destination is given in the assembler as an operand.
Machine Cycles: ROM execution time 6 cycles
RAM execution time 6 cycles

Cache RAM execution time 2 cycles

2-9-24

SNES DEVELOPMENT MANUAL

EE |

Example: In the following example, the sign flag is set and the overflow flag
is reset. The program jumps forward 4 bytes from the execution
address of the instruction.

BLT $+4H

The relationship between the program and program
counter is as follows:

PC ADDRESS Object Code
BBD
ook 06— (BLT $+4H)
58(1) «PC before jump —— Execute instruction
BC2 «PC after jump <— :Lg?g::ﬁss BCO

2-9-25

DESCRIPTION OF INSTRUCTIONS

9.21 BMle

Operation: If SFlag=1
then Riste—Ris (e=-128~+127)
Ri5 identifies the next
address for the BMI
instruction (2 bytes)
Description: If the sign flag is “1”, add “e” to the program counter Ry5 and

read the next instruction at the location indicated by the resulting
value in the program counter.

If the sign flag is “0”, do not jump.

The relative offset can be -128 ~ +127 bytes from the address
following the code for “e”.

If the decision results in a JUMP, the next instruction to be exe-
cuted will already be in the instruction pipeline of the processor.
For this reason one byte from the pipeline will be executed be-
fore the instruction at the branch destination is executed. (The
execution time for this instruction is not included in the machine
cycles listed below.)

Flags affected:

B |ALT1|ALT2| O/V | S cY Z

No flags affected

Opcode: (MSB) (LSB)
00| 0|01 0] 1] 1 |(0BH)
BMI e <«—— e (00H~FFH) —— | Relative
address
Note: The number “e” (number, label, formula) which shows the jump
destination is given in the assembler as an operand.
Machine Cycles: ROM execution time 6 cycles
RAM execution time 6 cycles

Cache RAM execution time 2 cycles

2-9-26

SNES DEVELOPMENT MANUAL

Example: In the following example, the sign flag is set and the program
jumps forward 5 bytes from the execution address of the instruc-
tion.

BMI $+5H

The relationship between the program and program
counter is as follows:

PC ADDRESS Object Code

57D

57E 0B

57F 03] (BMI §+5H)
580 «—PC before jump Execute instruction
581 at address 580
982) and jump.

583 «PC afterjump -—-

2-9-27

DESCRIPTION OF INSTRUCTIONS

| i
9.22 BNE e
Operation: If ZFlag=0
then R15+e"—)R15 (e= '128~+127)
R15 identifies the next
address for the BNE
instruction (2 bytes)
Description: If the zero flag is “0”, add “e” to the program counter Ry5 and

read the next instruction at the location indicated by the resulting
value in the program counter.

If the zero flag is “1”, do not jump.

The relative offset can be -128 ~ +127 bytes from the address
following the code for “e”.

If the decision results in a JUMP, the next instruction to be exe-
cuted will already be in the instruction pipeline of the processor.
For this reason one byte from the pipeline will be executed be-
fore the instruction at the branch destination is executed. (The
execution time for this instruction is not included in the machine
cycles listed below.)

Flags affected:

B |ALT1|ALT2] O/V | S CY Y4

No flags affected

Opcode: (MSB) (LSB)
00| 0|0 1] 0] 0] O |(08H)
BNE e <«—— ¢ (00H~FFH) ——» | Relative
address
Note: The number “e” (number, label, formula) which shows the jump
destination is given in the assembler as an operand.
Machine Cycles: ROM execution time 6 cycles
RAM execution time 6 cycles

Cache RAM execution time 2 cycles

2-9-28

SNES DEVELOPMENT MANUAL
Example: In the following example, the zero flag is reset and the program
jumps backward 2 bytes from the execution address of the in-
struction.
BNE $-2H
The relationship between the program and program
counter is as follows:
PC A E Object Code
35FB .
35FC «PC after jump Execute
35FD instruction at
35FE 08
—] (BNE $-2H) address 3600 and
35FF FC jump
3600 «PC before jump '
3601

2-9-29

DESCRIPTION OF INSTRUCTIONS

J

9.23 BPL e

Operation: If SFlag=0
then Rys+e—Rq5 (e=-128~+127)
Ry5 identifies the next
address for the BPL
instruction (2 bytes)
Description: If the sign flag is “0”, add “e” to the program counter R5 and

read the next instruction at the location indicated by the resulting
value in the program counter.

If the sign flag is “1”, do not jump.

The relative offset can be -128 ~ +127 bytes from the address
following the code for “e”.

If the decision results in a JUMP, the next instruction to be exe-
cuted will already be in the instruction pipeline of the processor.
For this reason one byte from the pipeline will be executed be-
fore the instruction at the branch destination is executed. (The
execution time for this instruction is not included in the machine
cycles listed below.)

Flags affected:

B |ALT1|ALT2| OV | S cY Z

No flags affected

Opcode: (MSB) (LSB)
00| 0j 0| 1] 0] 1] 0 [(OAH)
BPL e <«—— ¢ (OOH~FFH) —— | Relative
address
Note: The number “e” (number, label, formula) which shows the jump
destination is given in the assembler as an operand.
Machine Cycles: ROM execution time 6 cycles
RAM execution time 6 cycles

Cache RAM execution time 2 cycles

2-9-30

SNES DEVELOPMENT MANUAL

Example: In the following example, the sign flag is reset and the program
jumps forward 4 bytes from the execution address of the instruc-

tion.
BPL $+4H

The relationship between the program and program
counter is as follows:

PC ADDRESS QObject Code

95D

95E 0A

5E 0] (BPL $+4t)

960 «PC before jump — Execute instruction

961
962 «PC after jump <e— :Lg?g:ﬁgs 960

963

2-9-31

DESCRIPTION OF INSTRUCTIONS

9.24 BRA e

g
Operation: Ris+te—Rq5 (e=-128~+127)

R45 identifies the next

address for the BRA

instruction (2 bytes)
Description: Regardless of the status of the flags, add “e” to the program

counter Ry5 and read the next instruction at the location indicat-
ed by the resulting value in the program counter.

The relative offset can -128 ~ +127 bytes from the address fol-
lowing the code for “e”.

When a JUMP occurs, the next instruction to be executed will al-
ready be in the instruction pipeline of the processor. For this rea-
son one byte from the pipeline will be executed before the
instruction at the branch destination is executed. (The execution
time for this instruction is not included in the machine cycles list-
ed below.)

Flags affected:

B |ALT1|ALT2| O/V | S CcY Y4

No flags affected

Opcode: (MSB) (LSB)
00| 0| 0] 0| 1] 0] 1 [(O5H)
BRA e <«— ¢ (00H~FFH) —p | Relative
address
Note: The number “e” (number, label, formula) which shows the jump
destination is given in the assembler as an operand.
Machine Cycles: ROM execution time 6 cycles
RAM execution time 6 cycles

Cache RAM execution time 2 cycles

2-9-32

SNES DEVELOPMENT MANUAL

= |

Example: In the following example, the program jumps backward to the ex-
ecution address of the instruction.

BRA $0H

The relationship between the program and program
counter is as follows:

PC ADDRESS Object Code

BOFC

BOFE

BOF 05 «PC after jump Execute
BOFF FE—] (BRA $OH) i instruction at
B100 «PC before jump — address B100
B101 and jump.

2-9-33

DESCRIPTION OF INSTRUCTIONS

| i
9.25 BVCe
Operation: If ON Flag=0
then Ryz+e—Rqs (e=-128~+127)
Ri5 identifies the next
address for the BVC
instruction (2 bytes)
Description: If the overflow flag is “0”, add “e” to the program counter Ry5 and
read the next instruction at the location indicated by the resulting
value in the program counter.
If the overflow flag is “1”, do not jump.
The relative offset can be -128 ~ +127 bytes from the address
following the code for “e”.
If the decision results in a JUMP, the next instruction to be exe-
cuted will already be in the instruction pipeline of the processor.
For this reason one byte from the pipeline will be executed be-
fore the instruction at the branch destination is executed. (The
execution time for this instruction is not included in the machine
cycles listed below.)
Flags affected:
B |ALT1|ALT2| O/NV | S CYy V4
No flags affected
0| 0| O0fO0| 1] 1] 1] 0 [(OEH)
BVC e <«—— ¢ (0OH~FFH) ——» | Relative
address
Note: The number “e” (number, label, formula) which shows the jump
destination is given in the assembler as an operand.
Machine Cycles: ROM execution time 6 cycles

RAM execution time 6 cycles
Cache RAM execution time 2 cycles

2-9-34

SNES DEVELOPMENT MANUAL

Example: In the following example, the overflow flag is reset and the pro-
gram jumps forward 4 bytes from the execution address of the

instruction.

BVC $+4H

The relationship between the program and program
counter is as follows:

PC ADDRESS Object Code

288D

R o ewsan

2691 O before j“mpj i addross 2800
2892 «PC after jump and jump.

2893 ame

2-9-35

DESCRIPTION OF INSTRUCTIONS

9.26 BVSe
Operation: If O/V Flag=1
then Rys+e—Rq5 (e=-128~+127)
Ry5 identifies the next
address for the BVS
instruction (2 bytes)
Description: If the overflow flag is “1”, add “e” to the program counter Ry5 and

read the next instruction at the location indicated by the resulting
value in the program counter.

If the overflow flag is “0”, do not jump.

The relative offset can be -128 ~ +127 bytes from the address
following the code for “e”.

If the decision results in a JUMP, the next instruction to be exe-
cuted will already be in the instruction pipeline of the processor.
For this reason one byte from the pipeline will be executed be-
fore the instruction at the branch destination is executed. (The
execution time for this instruction is not included in the machine
cycles listed below.)

Flags affected:

B |ALT1|ALT2| O/V | S CcY Y4

No flags affected
Opcode: (MSB) (LSB)
oOoyo0|0| O 1| 1| 1] 1 |(OFH)
BVSe < e (00H~FFH) ——» | Relative
address
Note: The number “e” (number, label, formula) which shows the jump
destination is given in the assembler as an operand.
Machine Cycles: ROM execution time 6 cycles
RAM execution time 6 cycles

Cache RAM execution time 2 cycles

2-9-36

SNES DEVELOPMENT MANUAL

E ' |

Example: In the following example, the overflow flag is set and the program
jumps backward 2 bytes from the execution address of the in-
struction.

BVS $-2H

The relationship between the program and program
counter is as follows:

PC ADDRESS Object Code

68CB)

68 «PC afterj

68D atierjump Execute instruction
68E OF 3 at address 690
68F Fc— BYS&2H) | ohgjump.

69? «PC before jump __

69

2-9-37

DESCRIPTION OF INSTRUCTIONS
I ' |

9.27 CACHE
Operation: If CACHE BASE REGISTER<>(R5 & OFFFOH)
then (Ry5 & OFFFOH)—>CACHE BASE REGISTER
Description: When the cache base register is equal to the address with the
lower 4 bits of the program counter at 0, nothing occurs. When it
is not equal to this address, reset all cache flags and set the
cache base register to that value.
Flags affected:
B |[ALT1|ALT2| O/V | S CY z
0 0 0 - - - -
B : Reset
ALT1 : Reset
ALT2 : Reset
Opcode: (MSB) (LSB)
CACHE 01000 |00 1] 0} (02H)
Machine Cycles: ROM execution time 3~4 cycles
RAM execution time 3~4 cycles

Cache RAM execution time 1 cycle

2-9-38

SNES DEVELOPMENT MANUAL

E_

9.28 CMODE
Operation:

Description:

Sreg (b4~b0) — PLOT OPTIONS REGISTER

This instruction loads the lower 5 bits of the source register into
the plot options register. The instruction is used to specify the
PLOT, COLOR, and GETC execution modes.

Bit O - Transparency Flag

0 = Transparency ON
If transparency is on and the color register is “0”, the plot circuit
only changes the X coordinate. When transparency is on and the

color register is other than “0”, the normal plotting operation is
performed.

1 = Transparency OFF

The normal plotting operation is performed when transparency is
off.

Bit 1 - Dither Flag

Bit 1 is only valid in the 16-color mode. When Bit 1 is “1” and the
values of bit 0 in registers R1 and R2 are the same, the lower 4
bits in the color register are plotted. When bit 0 of registers R1
and R2 are different, the upper 4 bits in the color register are
plotted.

Note: When transparency is on and the 4 bits to be plotted are
“0”, only the X coordinate is changed.

Bit 2 - Upper 4 Bits Color

Bit 2 is valid in the 16-color and 256-color modes. In the 256-col-
or mode, Bit 3 must be set to a logic “1”.

When Bit 2 is “1”, the upper 4 bits in the source register are
stored in the lower 4 bits of the color register while processing
the COLOR and GETC instructions. This allows the data for two
pixels to be stored in one byte.

Bit 3 - 256 Color Mode Only

Set Bit 3, “1”, in the 256-color mode to fix the upper 4 bits of the
color register while processing the COLOR and GETC instruc-
tions and change the lower 4 bits only.

Bit 4 - Sprite Mode
Set Bit 4, “1”, to specify the bitmap in the sprite mode.

2-9-39

DESCRIPTION OF INSTRUCTIONS

j

Flags affected:

B |ALT1|ALT2| O/V | S cYy Y4

0 0 0 - - - -
B : Reset
ALT1 : Reset
ALT2 : Reset
Opcode: (MSB) (LSB)
CMODE olo|1|1]|1|1] 0| 1] @3DH

o|1|]0|{0 |1} 1] 1] 0| (4EH)

Machine Cycles: ROM execution time 6 cycles
RAM execution time 6 cycles
Cache RAM execution time 2 cycles

Example: Under the following conditions,
Sreg: Ry, Ry= 0002H
the transparency and dithering modes are set when
CMODE

is executed.

2-9-40

SNES DEVELOPMENT MANUAL

9.29 CMP R,
Operation: Sreg— Rn (n=0~15)

Description: This instruction subtracts the operand R,, from the source regis-
ter and sets the flags accordingly. The result of the subtraction is
not stored.

The source register is specified in advance using a FROM or
WITH instruction. When not specified, the source register de-
faults to R,,.

The operand can be Ry~R5.

Flags affected:

B |ALT1|ALT2| O/V S CcY y4
0 O 0 * * *

B : Reset

ALT1 : Reset

ALT2 : Reset

o : Set on overflow, else reset

S : Set when the result is negative, else reset.
CY : Set on unsigned borrow, else reset.

Z : Set on zero result, else reset

*

Opcode: (MSB) (LSB)
olof{ 1|1 |11 1] 1] (3FH)
o|1]|1]o0 n (OH~FH) (6nH)

CMP R,

Machine Cycles: ROM execution time 6 cycles
RAM execution time 6 cycles
Cache RAM execution time 2 cycles

Example: Under the following conditions,
Sreg' Ry, Ry= 8000H, R3= 2FFFH

the overflow and carry flags are set and sign and zero flags are
reset when

CMP R,

is executed.

2-9-41

DESCRIPTION OF INSTRUCTIONS

B .
9.30 COLOR

Operation: Sreg — Color register

Description: This instruction loads the lower 8 bits of the source register into

the color register as the color value.

Note: The value in the color register is stored in the color matrix (8
rows x 8 columns) with the PLOT instruction. When the PLOT in-
struction has been executed eight times or either of registers R4
or Ry is changed, the data is changed automatically to character
data format and stored in the game pak RAM.

Flags affected:

B |ALT1 |ALT2| O/V | S CcY Z

0 0 0 - - - -
B : Reset
ALT1 : Reset
ALT2 : Reset
Opcode: (MSB) (LSB)
COLOR Ol1]0|0 1| 1] 1] 0} (4EH)
Machine Cycles: ROM execution time 3 cycles
RAM execution time 3 cycles

Cache RAM execution time 1 cycles
Example: Under the following conditions:
Steg' Re, Rg= 9830H
the color register becomes 30H when
COLOR

is executed.

2-9-42

SNES DEVELOPMENT MANUAL

ke :]
9.31 DECR,

Operation: R,—1—> R, (n=0~14)

Description: This instruction decrements the register specified in the operand

R, by 1 and stores the result back in the same register. The reg-
ister used can be Ry-Ry4.

Flags affected:
B |ALT1|ALT2| O/NV S CcY 4
0 O 0 - * _ *
B : Reset
ALT1 : Reset
ALT?2 : Reset
S : Set when the result is negative, else reset.
Z : Set on zero result, else reset
Opcode: (MSB) (LSB)

DEC R, 111]1]0 n (OH~EH) (EnH)

Machine Cycles: ROM execution time 3 cycles
RAM execution time 3 cycles
Cache RAM execution time 1 cycles

Example: Under the following conditions:
Rg= A3F7H
when the following instruction is executed
DEC Rq
Ry becomes A3F6H.

2-9-43

DESCRIPTION OF INSTRUCTIONS
I o

9.32 DIV2

Operation: If (Sreg) = -1 then 0 — (Dygg)
else ASR (Sygg) = (Dreg)

Description: This instruction automatically shifts all bits in the source register
right one place. The result is stored in the destination register.
(Refer to ASR instruction for details.) If the source register data
is FFFFH, the result stored in the destination register is 0000H.

The source and destination registers are specified in advance
using a FROM, WITH, or TO instruction. When not specified,
these registers default to R,

Flags affected:

B |ALT1|ALT2| O/V | S CcY y4
O 0 0 - * * *

B : Reset

ALT1 : Reset

ALT2 : Reset

S : Set when the result is negative, else reset.

cY : Set when Bit 0 of the source register is “1”
and reset when “0”.

Z : Set on zero result, else reset

Opcode: (MSB) (LSB)

o{o| 1|1 |1|1]0]| 1] (3DH)
1lolo|1 o] 1] 1] 0] (96H)

DIV2

Machine Cycles: ROM execution time 6 cycles
RAM execution time 6 cycles
Cache RAM execution time 2 cycles

2-9-44

SNES DEVELOPMENT MANUAL

Example: Under the following conditions,

Sreg R7, Dreg: Rz
cY Bit15 Bit0
Ry 0] 1[oJoJoJ 1] 1] o] o[o[1[1 o] 1] 0] 1] (4635H)

becomes
CcY Bit15 Bit0
Ry:| 0[o[1]oJoJ o] 1] 1T o[o] o1 [1] 0| 1] 0| (231AH)
when

DIv2

is executed.

2-9-45

DESCRIPTION OF INSTRUCTIONS

]
9.33 FMULT
Operation:
D15 Sreg DO D15 Re DO
L] [) L] [] [X e o e [] []
D31 D16 D15 Do
Upper 16 Bits Lower 16 Bits
D15 ¢ DO \ CY Flag
[] [] ® [] []
Dreg (Dreg<>R4)
Description: This instruction performs a 16 x16-bit signed multiplication with
the source register and Rg. The upper 16 bits of the 32-bit result
are stored in the destination register. Bit 15 of the 32-bit result
becomes the carry flag.
The source and destination registers are specified in advance
using a FROM, WITH, or TO instruction. When not specified,
these registers default to Ry,
Note: Any register, Ry~Ry5, except R4 may be assigned as the
destination register.
Flags affected:
B |ALT1{ALT2| OV | S CYy z
0 0 0 _ * * *
B : Reset
ALT1 : Reset
ALT2 : Reset
S : Set when the result is negative, else reset.
CcY : Set when Bit 15 of the result is “1”
and reset when “0”.
Z : Set if the upper 16 bits of result are zero,
else reset.
Opcode: (MSB) (LSB)
FMULT 110001 |1 [1] 1] 1] (9FH)

2-9-46

SNES DEVELOPMENT MANUAL

Machine Cycles: ROM execution time 11 or 7 cycles

RAM execution time 11 or 7 cycles

Cache RAM execution time 8 or 4 cycles
Note: The number of machine cycles depends on the CFGR register.
Example: Under the following conditions,

Sreg: Rs, Dreg: R2, Rs= 4AAAH, Rg= DAABH

R, becomes F51CH and the carry flag and sign flag are set
when

FMULT

is executed.

2-9-47

DESCRIPTION OF INSTRUCTIONS

9.34 FROM R,

REGISTER PREFIX INSTRUCTION

Operation: If B =0 then set Siq to Ry, (n=0~15)
else R, — Dyeg

Description: This instruction specifies which of the registers, Ry~R1s, is to be
used as the source register. If the B flag is set, the contents of
the specified operand R, are stored in the destination register
Deq: Which is specified using the WITH instruction. (Refer to the
MOVES instruction.)

Flags affected:

B |ALT1|ALT2| OV | S CcY y4

No flags affected
Opcode: (MSB) (LSB)
FROMR, | 1| 0| 1|1 n (OH~FH) (BnH)

Machine Cycles: ROM execution time 3 cycles
RAM execution time 3 cycles
Cache RAM execution time 1 cycles

Example: Execute

FROM R,

to set R, as the source register.

To perform Ro+ Ra= R, write:

FROM R, ;Sets the source register to R,
ADD Ry ;Executes R, + R3—R,

2-9-48

SNES DEVELOPMENT MANUAL

L

9.35 GETB
Operation:

D7 ROM Buffer DO

OOH ® [] L] [] []
D15 ¢ D8 D7 ‘ DO

[] [] [] [] [] [] [] [] L] []

I:)reg

Description: This instruction loads one byte of data stored in the ROM buffer

Flags affected:

into the lower 8 bits of the destination register and resets the up-
per 8 bits of the destination register. Register Ry, is the ROM ad-
dress pointer when data is loaded from the game pak ROM into
the ROM buffer. Using the value stored at R4, for the game pak
ROM address, data is read from game pak ROM to the ROM
buffer.

Banks are specified in advance using the ROMB instruction.
However, changing banks using the ROMB instruction does not
in itself trigger a ROM load.

The destination register is specified in advance using a WITH or
TO instruction. When not specified, this register defaults to Ry,.

B |ALT1[ALT2| O/NV | S CcY V4

0 0 0 - - - -
B : Reset
ALT1 : Reset
ALT2 : Reset
Opcode: (MSB) (LSB)
GETB Tp1] 1101} 1|17 1] (EFH)

Machine Cycles:

Note:

ROM execution time 3~8 cycles
RAM execution time 3~9 cycles
Cache RAM execution time 1~6 cycles

Because the ROM buffer is used, the number of execution cycles

varies with each program.

2-9-49

DESCRIPTION OF INSTRUCTIONS

Example: Under the following conditions,
ROM buffer=0075H, D,¢q:R
Ro becomes 0075H when
GETB

is executed.

2-9-50

SNES DEVELOPMENT MANUAL

T
9.36 GETBH
Operation:
Sreg
D7 ROMBuffer po D15 D8 D7 DO
[T -+ T [] UpperByte [|| [LowerByts [|
D15 l D8 D7 ‘ DO
Upper Byte Lower Byte
Dr(-:‘g
Description: This instruction loads the data contained in the ROM buffer to

the high byte of the destination register and the low byte of the
source register to the low byte of the destination register.

The source and destination registers are specified in advance
using a WITH, FROM, or TO instruction. When not specified,

these registers default to Ry,

Note: Refer to the GETB instruction and “Memory Mapping” for infor-
: mation to load data from game pak ROM to the ROM buffer.

Flags affected:

B |ALT1[ALT2| O/V | S 0} 4 y4
0 0 0 - - - -
B : Reset
ALT1 : Reset
ALT2 : Reset
Opcode: (MSB) (LSB)
GETBH 0|0 1|1 |11 1] 0| 1| (3DH)
1111 1{o0o |1 11| 1] (EFH)
Machine Cycles: ROM execution time 6~10 cycles
RAM execution time 6~9 cycles
Cache RAM execution time 2~6 cycles
Note: Because the ROM buffer is used, the number of execution cycles

varies with each program.

2-9-51

DESCRIPTION OF INSTRUCTIONS

= }
Example: Under the following conditions,

(ROM buffer) = 75H, Syeq: R, Dyeg: Re, Rp= 4ABDH

Re becomes 75BDH when
GETBH

is executed.

2-9-52

SNES DEVELOPMENT MANUAL

9.37 GETBL
Operation:
Sreg
D15 D8D7 Do D7 ROMBuffer pg
| | UpperByte [[[LowerByte | | [[«.... [|
D15 } D8 D7 l DO
Upper Byte Lower Byte
Dreg
Description: This instruction loads the data contained in the ROM buffer to
the low byte of the destination register and the high byte of the
source register to the high byte of the destination register.
The source and destination registers are specified in advance
using a WITH, FROM, or TO instruction. When not specified,
these registers default to R,
Note: Refer to the GETB instruction and “Memory Mapping” for infor-
mation to load data from game pak ROM to the ROM buffer.
Flags affected:
B |ALT1|ALT2| O/V | S CYy 4
0 0 0 - - - -
B : Reset
ALT1 : Reset
ALT?2 : Reset
Opcode: (MSB) (LSB)
GETBL OO 1|1 |1 1] 1] 0| (3EH)

Machine Cycles

Note:

11101 [1]1]1] EFH

: ROM execution time 6~10 cycles

RAM execution time 6~9 cycles
Cache RAM execution time 2~6 cycles

Because the ROM buffer is used, the number of execution cycles
varies with each program.

2-9-53

DESCRIPTION OF INSTRUCTIONS

I

Example: Under the following conditions,

(ROM buffer) = 75H, Syeq: R, Dyeq: Re, Ro= 4ABDH

Re is 4A75H when
GETBL

is executed.

2-9-54

SNES DEVELOPMENT MANUAL

r—

9.38 GETBS

Operation:

D7 D6 DO
ROM Buffer [| |

TR EEE R

D15 D8 D7 D6 DO

Dreg

Description: This instruction loads the data contained in the ROM buffer to
the low byte of the destination register and the data contained in
Bit 7 of the ROM buffer to Bits 8~15 of the destination register.

The destination register is specified in advance using a WITH or
TO instruction. When not specified, this register defaults to R,,.

Note: Refer to the GETB instruction and “Memory Mapping” for infor-
mation to load data from game pak ROM to the ROM buffer.

Flags affected:

B [ALT1|ALT2| OV | S CY Y4

0 0 0 - - - -
B : Reset
ALT1 : Reset
ALT2 : Reset
Opcode: (MSB) (LSB)
GETBS OO0 1 {1 {11 1] 1| (8FH)
111 1(0|t] 11| 1] (EFH)
Machine Cycles: ROM execution time 6~10 cycles
RAM execution time 6~9 cycles
Cache RAM execution time 2~6 cycles
Note: Because the ROM buffer is used, the number execution cycles

varies with each program.

2-9-55

DESCRIPTION OF INSTRUCTIONS

= =

Example: Under the following conditions,

(ROM buffer) = 85H, Dyoq: Rg

Rg becomes FF85H when
GETBS

is executed.

2-9-56

SNES DEVELOPMENT MANUAL

9.39 GETC

Operation:

Description:

Note:

Flags affected:

(ROM buffer) — (COLOR register)

This instruction loads the data contained in the ROM buffer into
the color register as color data.

Refer to the GETB instruction and “Memory Mapping” for infor-
mation to load data from game pak ROM to the ROM buffer. Re-
fer to COLOR and “Bitmap Emulation” for information concerning
the color register and how to plot.

B |ALT1|ALT2{ O/NV | S CcY Y4

0 0 0 - - - -
B : Reset
ALT1 : Reset
ALT2 : Reset
Opcode: (MSB) (LSB)

GETC

Machine Cycles:

Note:

Example:

1111011 1111 1] 1| (DFH)

ROM execution time 3~10 cycles
RAM execution time 3~9 cycles
Cache RAM execution time 1~6 cycles

Because the ROM buffer is used, the number of execution cycles
varies with each program.

Under the following conditions,

(ROM buffer) = 4BH

4BH is loaded to the color register when
GETC

is executed.

2-9-57

DESCRIPTION OF INSTRUCTIONS
| J

9.40 HIB
Operation:
D15 Sreg D8 D7 DO
Upper Byte Lower Byte
O0H
D15 ‘ D8 D7 $ DO
Upper Byte Lower Byte
Dreg
Description: This instruction loads the high byte of the source register into the
low byte of the destination register. The high byte of the destina-
tion register is loaded with O0H.
The source and destination registers are specified in advance
using a WITH, FROM, or TO instruction. When not specified,
these registers default to Ry,
Flags affected:
B [ALT1|ALT2| O/V | S CcY y4
O 0 O - * - *
B : Reset
ALT1 : Reset
ALT?2 : Reset
S . Set if a negative number is loaded to the low
byte of the destination register, else reset.
Z : Set if zero is loaded to low byte of
the destination register, else reset.
Opcode: (MSB) (LSB)
HIB 1111010 |0] 0| 0| O (COH)
Machine Cycles: ROM execution time 3 cycles
RAM execution time 3 cycles

Cache RAM execution time 1 cycles

2-9-58

SNES DEVELOPMENT MANUAL

ETEE

Example: Under the following conditions,

Sreg: R11, Dreg=R1, R11= 8A43H

R4 becomes 008AH and the sign flag is set when
HIB

is executed.

2-9-59

DESCRIPTION OF INSTRUCTIONS

9.41 IBTR,, #pp
Operation:

D7 D6 DO

immediate data pp: | | i
EERRRERE, y e
Rp: (n=0~15)

D15 D8 D7 D6 Do
Description: This instruction loads one byte of immediate data (hexadecimal)

into the low byte of register R,,. Bit 7 of the immediate data is
loaded into bits 8 through 15 of R,,.

Flags affected:

B |ALT1|ALT2| OV | S cY z

0 0 0 - - . -
B : Reset
ALT1 : Reset
ALT2 : Reset
Opcode: (MSB) (LSB)

1lo]l1]0 n (OH~FH) (AnH)
<¢—— pp (00H~ FFH) ——| (ppH)

IBT R, #pp

Machine Cycles: ROM execution time 6 cycles
RAM execution time 6 cycles
Cache RAM execution time 2 cycles

Example: Since hexadecimal numbers are handled in the assembler as
intergers, without signs, a hexadecimal number of 80H or greater
that is entered as an operand is processed as a number greater
than +128, exceeding the range -128~+127. When this occurs,
the assembler will specify the low byte as the immediate data of
the IBT instruction.

IBT Rg, #4 ... 0004H — Rg
IBT Rg, #128 ..FF80H — Rg
IBT Rg, #0A4H .. FFA4H — Rg

2-9-60

SNES DEVELOPMENT MANUAL

9.42 INCR,
Operation: R,+1—-R, (n=0~14)
Description: This instruction increments the contents of the register specified

in the operand R, by one and stores the result back into the
same register.

The operand can be Ry~Ry,4.

Flags affected:

B |[ALT1|ALT2| OV | S CcY V4

0 0 0 o * - *

B : Reset

ALT1 : Reset

ALT2 : Reset

S : Set if result is negative, else reset.

Z : Set on zero result, else reset.
Opcode: (MSB) (LSB)

INC R, 110] 11 n (OH~EH) (DnH)
Machine Cycles: ROM execution time 3 cycles
RAM execution time 3 cycles

Cache RAM execution time 1 cycles
Example: When register Ry, is 65B1H, R4, becomes 65B2H when
INC Ry,

is executed.

2-9-61

DESCRIPTION OF INSTRUCTIONS

B]
9.43 IWT R,,, #xx

Operation: #xx (2-byte hexadecimal immediate data) — R,

(n = 0~15, #xx=0~65535)

Description: This instruction loads two bytes of immediate data, #xx (hexa-
decimal), to the register specified in the operand, R,,.
Flags affected:
B |ALT1|ALT2| O/V | S CcY p4
0 0 0 - - - -
B : Reset
ALT1 : Reset
ALT2 : Reset
Opcode: (MSB) (LSB)
ITW R,,, #xx 11111 n (OH~FH) (FnH)
x (OOH~FFH) (Lower Byte)
x (OOH~FFH) (Upper Byte)

The two-byte immediate data in the op code is loaded low
byte first, followed by the high byte.

Machine Cycles: ROM execution time 9 cycles
RAM execution time 9 cycles
Cache RAM execution time 3 cycles

Example: Register Ry becomes 4583H when
IWT Ry, #4583H

is executed.

2-9-62

SNES DEVELOPMENT MANUAL

9.44 JMP R,

Operation:

Description:

Flags affected:

Rn = Ry5 (PC) (n=8~13)

This instruction loads the contents of the register specified in the
operand R, to Ry5 (program counter) and initiates a program
fetch from the resulting location specified by the program
counter.

The next instruction to be executed will already be in the instruc-
tion pipeline of the processor. For this reason one byte from the

pipeline will be executed before the instruction at the branch des-
tination is executed. (The execution time for this instruction is not
included in the machine cycles listed below.)

The operand can be register Rg~R13.

B |ALT1[ALT2| O/V | S CcY Y4

0 0 0 - - - -

B : Reset

ALT1 : Reset

ALT2 : Reset
Opcode: (MSB) (LSB)

JMP Ry 11001 n (8H~DH) (9nH)

Machine Cycles: ROM execution time 3 cycles
RAM execution time 3 cycles

Example:

Cache RAM execution time 1 cycles

When register Ry is 0555H and the following program is execut-
ed,

PC Opcode

0444H JMP Ry,
0445H INC Ry

the jump destination is 0555H.

2-9-63

DESCRIPTION OF INSTRUCTIONS

i]
9.45 LDB (R,,)
Operation: (Rm) = Dyeg (Low Byte) (m=0~11)
00H — Dyqq (High Byte)
Description: This instruction loads one byte of data located at the game pak

RAM address contained in the register specified in the operand
Rp, and stores this data in the destination register. The upper
byte of the destination register is loaded with 00H.

Use the RAMB instruction to set the RAM bank. (Refer to
RAMB.)

The destination register is specified in advance using a WITH or
TO instruction. When not specified, this register defaults to Ry.

Flags affected:

B |ALT1|ALT2| O/V | S CcY Y4

0 0 0 - - - -
B : Reset
ALT1 : Reset
ALT2 : Reset
Opcode: (MSB) (LSB)
o|lo| 1|1 |{1]|1]0]| 1] (3DH)
LDB (R
Bl o110 |0 m (OH~BH) (4mH)
Machine Cycles: ROM execution time 11 cycles
RAM execution time 13 cycles
Cache RAM execution time 6 cycles
Note: The GSU waits while the data is loaded from game pak RAM.
The cycles required for this are included in the execution times
given above.

2-9-64

SNES DEVELOPMENT MANUAL

Example: Under the following conditions,

Dreg=R7, Ry= 3482H, (70:3482H)= 51H
RAMBR:70H

and when the following program is executed,
LDB (Ry)
R, becomes 0051H.

2-9-65

DESCRIPTION OF INSTRUCTIONS

J

B

9.46 LDW (R,
Operation:
Description:

Flags affected:

(Rm) — Dyeg (Low Byte) (m=0~11)

(Rmt1) — Dyeg (High Byte) When the contents of R, is:
even, (Rn+1)
odd, (R-1)

is loaded to the high byte.

The word data located in the game pak RAM address that equals
the contents of register R,,, are stored in the destination register.
The game pak RAM address bank is specified using the RAMB
instruction (refer to RAMB).

The destination register is specified in advance using a WITH or
TO instruction. When not specified, this register defaults to Ry,

B |ALT1|ALT2| O/V | S cY Z

Opcode:

0 0 0 - - - -
B : Reset
ALT1 : Reset
ALT2 : Reset
(MSB) (LSB)

LDW(Ry,) | ol 1] 010 m (OH~BH) (4mH)

Machine Cycles:

Note:

Example:

ROM execution time 10 cycles
RAM execution time 12 cycles
Cache RAM execution time 7 cycles

While a load is performed from the game pak ROM, the GSU is
in the WAIT state. This execution time is included in the above
machine cycles.

Under the following conditions,
Dreg:Rs, R3=6480H, (70:6480H)=COH, RAMBR=70H
and when the following program is executed,
LDW (R3)
the register R5 becomes CO2EH.

2-9-66

SNES DEVELOPMENT MANUAL

L

9.47 LEA R,, xx (Refer to IWT R,,, #xx)

Operation: Rpé—xx (n=0~15, xx=0~65535)
Description: This instruction loads two bytes of immediate data, #xx (hexa-
decimal), to the register specified in the operand R,,.
Flags affected:
B |ALT1|ALT2| OV | S CcYy V4
0 0 0 - - - -
B : Reset
ALT1 : Reset
ALT2 : Reset
Opcode: (MSB) (LSB)
LEA R, xx 111011 n (OH~FH) (FnH)
x (OOH~FFH) (Lower Byte)
x (OOH~FFH) (Upper Byte)

The two-byte immediate data in the op code is loaded low
byte first, followed by the high byte.

Machine Cycles: ROM execution time 9 cycles
RAM execution time 9 cycles
Cache RAM execution time 3 cycles

Example: Register R; becomes 4853H when
LEA Rj, #4853H

is executed.

2-9-67

DESCRIPTION OF INSTRUCTIONS

]

9.48 LINK #n

Operation:

Description:

Flags affected:

R15 +#n — R11 (n=1~4)
R15 contains address
following LINK instruction

This instruction adds the operand #n to the value contained in
register Ry5 (program counter) and stores the result in register
R,1. Operand #n can be a number from 1~4. This instruction can
be used to specify a return address in register R4 when jumping
to a subroutine.

B |ALT1|ALT2| OV | S CcY Y4

0 0 0 - - - -
B : Reset
ALT1 : Reset
ALT2 : Reset
Opcode: (MSB) (LSB)

LINK #n 110]0]1 n (1H~4H) (9nH)

Machine Cycles:

Example:

ROM execution time 3 cycles
RAM execution time 3 cycles
Cache RAM execution time 1 cycles

Under the following conditions,
R15: 4368H

and when the following program is executed,

4368 LINK #4
4369 IWT Rys, #74FFH
436C NOP

436B IBT Ry, #12H

register Ryq becomes 4369H + 2=436BH

2-9-68

SNES DEVELOPMENT MANUAL

9.49 LJMPR,

Operation: R, — Ry5 (PC)

(n=8~13)

Sreg — Program Bank Register (PBR)

Description: This instruction loads the register specified as operand, R,,, into
the program counter, Ry5 and loads the lower byte of the source
register to the program bank register. This allows the program to
jump to addresses in different banks.

The next instruction to be executed will already be in the instruc-
tion pipeline of the processor. For this reason one byte from the

pipeline will be executed before the instruction at the branch des-
tination is executed. (The execution time for this instruction is not
included in the machine cycles listed below.)

The operand can be any of registers Rg~R13.

Flags affected:
B |ALT1[ALT2| O/V | S cY y4
0 0 0 - - - -
B : Reset
ALT1 : Reset
ALT2 : Reset
Opcode: (MSB) (LSB)
0Ol 0| 1]1 1 11 0| 1| (3DH)
LJMP R
"1 1]0|o0]1 n (8H~DH) (9nH)
Machine Cycles: ROM execution time 6 cycles
RAM execution time 6 cycles

Cache RAM execution time 2 cycles

Example: Under the following conditions,
R4:0001H

the program jumps from 00:8006H to 01:0002H when the follow-
ing program is executed.

Bank :Address Syntax

00
00
00
00

:8000H IWT R0, #0002H
:8003H FROM R,
:8006H NOP

2-9-69

DESCRIPTION OF INSTRUCTIONS

G

9.50 LM R,,, (xx)

Operation: RAM (xx) — R, (low byte) (n=0~15, xx=0~65535)

RAM (xx+1) — R, (high byte) When the value of xx is:
even, (xx+1)
odd, (xx-1)
is loaded to the high byte.

Description: This instruction loads the data contained in the game pak RAM
address specified in the second operand xx and stores the data
in the register specified in the first operand R;,. The RAMB in-
struction is used to specify the bank of the RAM address.

Flags affected:
B |ALT1|ALT2| O/V | S CYy V4
0 0 0 - - - -
B : Reset
ALT1 : Reset
ALT2 : Reset
Opcode: (MSB) (LSB)
oo 11| 1] 10| 1] (3DH)
LM R,,, (xx) 111111 n (OH~FH) (FnH)
X (OOH~FFH) (ADRS Lower Byte)
x (OOH~FFH) (ADRS Upper Byte)
Machine Cycles: ROM execution time 20 cycles
RAM execution time 21 cycles
Cache RAM execution time 11 cycles
Note: While a load is performed from the game pak RAM, the GSU is
in the WAIT state. This execution time is included in the above
machine cycles.
Example: Under the following conditions,

(70:BACCH) = 28H, (70:BACDH) = 96H, RAMBR=70H

register Rg becomes 9628H when the following program is exe-
cuted:

LM Rg, (OBACCH)

2-9-70

SNES DEVELOPMENT MANUAL

9.51 LMS R,, (yy)

Operation:

Description:

Flags affected:

RAM (yy) — R, (low byte) (n=0~15, yy=0~510%)
RAM (yy+1) — R, (high byte)

*Note: Selectable RAM address (yy) must be an even number.

This instruction uses a short address method to perform the LM
instruction. The address is shortened by reducing the number of
bytes in the instruction opcode. The instruction loads data from
the game pak RAM address equal to the immediate number yy
and stores the data in register R,,. The selectable game pak
RAM address may be an even number of 0~510. The RAMB in-
struction is used to specify the bank of the RAM address.

B |ALT1|ALT2| O/V | S CcY Y4

0 0 0 - - - -
B : Reset
ALT1 : Reset
ALT2 : Reset
Opcode: (MSB) (LSB)
00|11 |{1] 1] 0] 1]|(3DH)
LMS R,,, (yy) 110[1]0 n (OH~FH) (AnH)
kk (OOH~FFH) (Address)

[Short address method]

Machine Cycles:

Note:

This method is used by LMS, SMS, and other instructions to re-
duce the number of bytes in the instruction opcode. Only one
byte is used. The actual game pak RAM address is twice that of
the address code. The relationship between yy in the above syn-
tax and kk in the opcode is:

yy =kk x 2
ROM execution time 17 cycles
RAM execution time 17 cycles

Cache RAM execution time 10 cycles

The GSU waits while data is loaded from game pak RAM. The
execution time required for this is included in the machine cycles
given above.

2-9-71

DESCRIPTION OF INSTRUCTIONS

Example: Under the following conditions,
(70:1AAH) = 32H, (70:1ABH) = 92H, RAMBR:70H

register Rz becomes 9232H when the following program is exe-
cuted:

Syntax Opcode
LMS R3, (1AAH) 3D A3 D5

2-9-72

SNES DEVELOPMENT MANUAL

9.52 LMULT
Operation:
D15 Sreg DO D15 Re DO
[] [[] ® o X [] [] [] [] ®
D31 D16 D15 DO
Upper Word Lower Word
D15 / DO D15 \ DO
[] e [] ® [J
Dreg CY Flag R4
Description: This instruction performs 16 x 16-bit signed multiplication using
the source register and register Rg. The upper 16 bits of the re-
sult are stored in the destination register, and the lower 16 bits
are stored in Ry. If Bit 15 of Rg is set, the carry flag is also set to
ll1 ”‘
The source and destination registers are specified in advance
using a WITH, FROM, or TO instruction. When not specified, the
source and destination registers default to Ry. If R, is specified
as the destination register, the result will be invalid.
Flags affected:
B [ALT1|ALT2| O/NV | S CYy 4
O 0 0 _ * * %*
B : Reset
ALT1 : Reset
ALT2 : Reset
S : Set if the result is negative, else reset
CY : Set if Bit 15 of Rg is “1”, reset if “0”
Z . Set if the destination register result is zero,
else reset.
Opcode: (MSB) (LSB)
LMULT Ofof(1|{1 (1] 1}0| 1] (3DH)

110} 01 1111 1] 1] (9FH)

2-9-73

DESCRIPTION OF INSTRUCTIONS

Machine Cycles: ROM execution time 10 or14 cycles
RAM execution time 10 or14 cycles
Cache RAM execution time 5 or 9 cycles

Note: The number of cycles varies depending upon the CFGR register
setting.
Example: Under the following conditions,

Sreg: Rg, l:)reg: Rg
Rg= B556H, Rg= DAABH

the register Rg becomes OAE3H and R, 5C72H when
LMULT

is executed.

2-9-74

SNES DEVELOPMENT MANUAL

L

9.53 LOB
Operation:
D15 Sreg D8 D7 DO
Upper Byte Lower Byte
OOH
D15 ¢ D8 D7 ¢ DO
Upper Byte Lower Byte
Dreg
Description: This instruction loads the lower byte of the source register to the

low byte of the destination register. The high byte of the destina-
tion register is loaded with OOH.

The source and destination registers are specified in advance
using a WITH, FROM, or TO instruction. When not specified, the
source and destination registers default to Ry.

Flags affected:

B |ALT1|ALT2| O/V | S cY Z

0 0 O - * - *
B : Reset
ALT1 : Reset
ALT2 : Reset
S : Set if the low byte of the source register is
negative, else reset.
Y4 : Set if low byte of the source register is zero,
else reset.
Opcode: (MSB) (LSB)
LOB 110011 | 1] 1| 1] 0| (9EH)
Machine Cycles: ROM execution time 3 cycles
RAM execution time 3 cycles

Cache RAM execution time 1 cycles

2-9-75

DESCRIPTION OF INSTRUCTIONS

B

Example: Under the following conditions,
Sreg: R10, Dreg: R12, R10= FB23H
the register Ry, becomes 0023H when
LOB

is executed.

2-9-76

SNES DEVELOPMENT MANUAL

9.54 LOOP

Operation: Ri2-1—Ry5
ifZ Flag=0 then R13‘—) R15 (PC)

Description: This instruction decrements Ry, by 1. If the result does not set
the zero flag, the contents of Ry3 are loaded into Ry5 and the
program is fetched from the resulting location specified by the
program counter.

If the zero flag is set, the program counter is incremented and
the next instruction is executed.

The instruction at the address following the LOOP instruction is
already loaded into the pipeline. The branch is taken after this in-
struction is executed.

Flags affected:

B |ALT1|ALT2| O/V | S 03 4 y4
0 o 0 - * - *
B : Reset
ALT1 : Reset
ALT2 : Reset
S : Set if the register Ry, is negative, else reset.
Z : Set if the register Ry, is zero, else reset.
Opcode: (MSB) (LSB)

LOOP

Machine Cycles:

Example:

ofo| 1]t |{1]1]0]|o0]| @ECH)

ROM execution time 3 cycles
RAM execution time 3 cycles
Cache RAM execution time 1 cycles

In the following program,

00:8014 INC R,
00:8015 INC Rg
00:8016 LOOP
00:8017 NOP
00:8018 ADD R,

if Ry3 is 8014H and Ry, is other than 0001H, the program jumps
to 00:8014H after the NOP instruction is executed. If Ry, is
0001H, the jump does not happen and the instruction ADD is ex-
ecuted.

2-9-77

DESCRIPTION OF INSTRUCTIONS

[G|
9.55 LSR
Operation:
D15 Sreg Do CY
0-—» + > > —+ + >
D15 v DO
Dreg
Description: This instruction shifts all bits in the source register one bit to the

right and stores the result in the destination register. Bit 15 be-
comes “0” and the value of Bit O is stored in the carry flag.

The source and destination registers are specified in advance
using a WITH, FROM, or TO instruction. When not specified, the
source and destination registers default to R,

Flags affected:

B |ALT1[ALT2| O/V | S CcY Y4

0 O O - O * *
B : Reset
ALT1 : Reset
ALT2 : Reset
S : Reset
CY : Set if Bit 0 in source register is “1”, else reset
4 : Set on zero result, else reset.
Opcode: (MSB) (LSB)
LSR 0| 0] 0|0 |00 1| 1] (03H)
Machine Cycles: ROM execution time 3 cycles
RAM execution time 3 cycles

Cache RAM execution time 1 cycles
Example: Under the following conditions,
Sreg: Rs: Dreg: Ro

bit 15 bit0
Rg: |1]0|1]|1|0(1(0[1[OfO|1]|1|1]|1]1]|1|(BS3FH)

LSR execution results in:

bit15 bit0 CY
R0;01011O1010011111(5A9FH)

2-9-78

SNES DEVELOPMENT MANUAL

2 1
9.56 MERGE
Operation:
D15 D8 D7 DO D15 D8 D7 DO
Rzl _UpperByte | T [LowerByte | | Rg[| UpperByte |]| | LowerByte | |
DI5 Y D8 D7 DO
Dregl_| _ UpperByte [[| LowerByte | |

Description: This instruction stores the high byte of R in the high byte of the
destination register and the high byte of Rg in the low byte of the
destination register.

The destination register is specified in advance using a WITH or
TO instruction. When not specified, the register defaults to Ry,

Flags affected:
B |[ALT1|ALT2| O/NV | S Cy y4
O 0 O * * * *
B : Reset
ALT1 : Reset
ALT2 : Reset
onN : Set if the result of (B6 or B7 or B14 or B15) is
“1”, and reset if “0”".
S : Set if the result of (B7 or B15) is “1”,
and reset if “0”.
CY : Set if the result of (B5 or B6 or B7 or B13 or
B14 or B15) is “1”, reset if “0”".
Z : Set if the result of (B4 or B5 or B6 or B7 or B1Z
or B13 or B14 or B15) is “1”, reset if “0”
Opcode: (MSB) (LSB)
MERGE Ot 11 0| 0] 0] 0] (70H)
Machine Cycles: ROM execution time 3 cycles
RAM execution time 3 cycles

Cache RAM execution time 1 cycles

2-9-79

DESCRIPTION OF INSTRUCTIONS

]

Example:

Under the following conditions:
Dreg: Ro, R7=05AAH, Rg=FC33H

Rg becomes 05FCH and the sign, over flow, carry and zero flags
are set when

MERGE

is executed.

2-9-80

SNES DEVELOPMENT MANUAL

9.57 MOVER,, R,;
Operation: Ry — R, (n,n’ = 0~15)
Description: This instruction loads the contents of register R,,’, specified in the
second operand, to register R,,, specified in the first operand.
Flags affected:
B |ALT1[ALT2| O/V | S CcYy z
0 0 0 - - - -
B : Reset
ALT1 : Reset
ALT?2 : Reset
Opcode: (MSB) (LSB)
' ~ 2n’H
MOVE R, R, olo|1]o0 n’ (OH~FH) (2n'H)
ofo0| 0|1 n (OH~FH) (1nH)
Machine Cycles: ROM execution time 6 cycles
RAM execution time 6 cycles
Cache RAM execution time 2 cycles
Example: Under the following conditions,

Rq4= 4983H, Rg= 9264H
the register Rg becomes 4983H when
MOVE Rg, Ry4

is executed.

2-9-81

DESCRIPTION OF INSTRUCTIONS

C —r)
9.58 MOVE R,,, #xx
MACRO INSTRUCTION
Operation: #xx = R, (n = 0~15, #xx=-32768~65535)
(if unsigned, #xx=0~65535)
Conditions: IF (-128<xx<127): (if unsigned, (0=xx<127) or
then, use an IBT instruction (65408<xx<65535))

Description:

Example:

else, use an IWT instruction.

This instruction directly loads hexadecimal immediate data into
register R, specified in the first operand. This is a macro instruc-
tion and is stored in memory as “IWT R,,, #xx” or “IBT R, #pp.”
The assembler automatically recognizes whether this should be
replaced with an IBT instruction or IWT instruction, depending
upon the value of immediate data.

If immediate data is -128 ~ 127 (unsigned, 0~127 or
65408~65535), it is replaced with an IBT instruction. Otherwise,
it is replaced with an IWT instruction. Refer to “IBT R,,, #pp” or
“IWT R,, #xx” for machine cycles, flags affected, and opcode.

MOVE Rg, #070H ;0070H—Rg (IBT Rg, #070H)
MOVE Rg, #0A4H; 00A4H—Rg (IWT Rg, #0A4H)
MOVE Rg, #-128; FF80—Rg (IBT Rg, #-128)

2-9-82

SNES DEVELOPMENT MANUAL

9.59 MOVE R,,, (xx)
MACRO INSTRUCTION

Operation:

Conditions:

Description:

Example:

(xx) = R, (low byte) (n=0~15, xx=0~FFFFH)
(xxxt1) — R, (high byte)

Note: When the value xx is even, the contents of (xx+1) are
loaded to the high byte of R,. When the value of xx is
odd, the contents of (xx-1) are loaded to the high byte of
Rn.

If (0000H<xx<01FFH) and xx is even:
then, use an LMS instruction
else, use an LM instruction.

This instruction loads hexadecimal data contained in the game
pak RAM address specified in the second operand and stores
the data in register R,,, specified in the first operand.. The RAMB
instruction is used to specify the bank of the game pak RAM ad-
dress (refer to RAMB).

This is a macro instruction and is stored in memory as “LM R,,,
(xx)” or “LMS R,,, (yy).” The assembler automatically recognizes
whether it should be replaced with an LM instruction or an LMS
instruction, depending upon the value of the game pak RAM ad-
dress specified.

When the game pak RAM address is an even number of
0~1FFH, it is replaced with an LMS instruction. Otherwise, it is
replaced with an LM instruction. Refer to “LM R, (xx)” or “LMS
Ry, (yy)” for machine cycles, flags affected, and opcode.

Under the following conditions,
(70:BACCH) = 28H, (70:BACDH) = 96H, RAMBR=70H

the register Rg becomes 9628H when the following program is
executed:

MOVE Rg, (OBACCH) ;(70:BACCH)—Rg(Low Byte) (LM Rg, (0BACCH))

,(70:BACDH)—Rg(High Byte)

2-9-83

DESCRIPTION OF INSTRUCTIONS

1

Also, under the following conditions,
(71:01AAH) = 32H, (71:01ABH) = 92H, RAMBR=71H

the register R; becomes 9232H when the following program is
executed:

MOVE Rg, (1AAH) ;(71:01AAH)—Rz(Low Byte) (LMS R3, (01AAH))
;(71:01ABH)—R3(High Byte)

2-9-84

SNES DEVELOPMENT MANUAL

T

9.60 MOVE (xx), R

n

MACRO INSTRUCTION

Operation:

Conditions:

Description:

Example:

Ry, (low byte) — (xx) (n=0~15, xx=0~FFFFH)
R, (high byte) — (xx+1)

Note: If the value of xx is even, store the high byte of R, at
(xx+1). If the value of xx is odd, store the high byte of R,
at (xx-1).

If (0000H<xx<01FFH) and xx is even:
then, use an SMS instruction,
else, use an SM instruction.

This instruction stores the contents (hexadecimal data) of regis-
ter R, specified in the second operand in the game pak RAM ad-
dress specified in the first operand. The RAMB instruction is
used to specify the bank of the game pak RAM address (refer to
“RAMB”").

This macro instruction is stored in memory as “SM (xx), R,,” or
“SMS (yy), R.” The assembler automatically recognizes wheth-
er it should be replaced with an SM instruction or an SMS in-
struction, depending upon the value of the game pak RAM
address specified.

When the game pak RAM address is an even number of
0~1FFH, it is replaced with an SMS instruction. Otherwise, it is
replaced with an SM instruction. Refer to “SM (xx), R,” and
“SMS (yy), R,” for machine cycles, flags affected, and opcode.

Under the following conditions,

Rg: BACDH, and RAMBR=71H
when the following program is executed,

MOVE (9CDEH), Ry ;Rg (Low Byte)—>(71:9CDEH) (SM (9CDEH), Ry)

:Rg (High Byte)—>(71:9CDFH)
the result is (71:9CDEH)=CDH, (71:9CDFH)=BAH

2-9-85

DESCRIPTION OF INSTRUCTIONS

]

Also, under the following conditions,

R,: 3248H, and RAMBR=70H
when the following program is executed,

MOVE (136H), Ry ;Ro (Low Byte)—(70:0136H) (SMS (136H), R»)
‘R, (High Byte)—>(70:0137H)

the result is (70:0136H)=48H, (70:0137H)=32H

2-9-86

SNES DEVELOPMENT MANUAL

R

9.61 MOVEB R,,, (R,)
MACRO INSTRUCTION

Operation: (Ry) = R, (Low Byte) (n=0~15, N’=0~11)
00H —R,, (High Byte)
Conditions: If n=0:

then, use only LDB instruction,
else, use TO instruction and LDB instruction.

Description: This instruction loads one byte of data located at the game pak
RAM address equal to the contents of register R, specified by
the second operand and stores this data in the register specified
in the first operand. The high byte of the destination register is
loaded with O0OH. The register identified in the second operand is
selectable from Ry~R¢4. The RAMB instruction is used to specify
the game pak RAM bank (refer to “RAMB”).

This macro instruction is stored in memory as “LDB (R,,)" or “TO
R,y" + “LDB (R,).” The assembler automatically recognizes
whether or not the TO instruction is required. When n does not
equal 0, the TO instruction is added. Refer to “LDB (R,)” and
“TO R,,” for machine cycles, flags affected, and opcode.

Example: Under the following conditions,
R,=3482H, (70:3482H)=51H, RAMBR=70H
when the following program is executed,

MOVEB Ry, (Ry) ;(R)—Ry (Low Byte) (TO R,+LDB (R,))
:00H—R; (High Byte)

register R; becomes 0051H.
Also, under the following conditions,

R3=3581H, (70:3581H)=9AH, RAMBR=70H
when the following program is executed,

MOVEB Ry, (R3) ;(R3)—Rg (Low Byte) (LDB (Rjy))
;00H—R (High Byte)

register Ry becomes 009AH.

2-9-87

DESCRIPTION OF INSTRUCTIONS

]

9.62 MOVEB (R,’), R,
MACRO INSTRUCTION
Operation: Rn (low byte) — (R,)) (n=1~15, N’=0~11)

Conditions: If n=0:

then, use only STB instruction,
else, use FROM instruction and STB instruction.

Description: This instruction stores the contents of the low byte of register R,

Example:

specified in the second operand at the game pak RAM address
equal to the contents of register R, specified in the first oper-
and. The register identified in the first operand is selectable from
Ro~R11. The RAMB instruction is used to specify the game pak
RAM bank (refer to “RAMB").

This macro instruction is stored in memory as “STB (Rm)” or
“FROM Rn” + “STB (R,).” The assembler automatically recog-
nizes whether or not the FROM instruction is required. When n
does not equal 0, the FROM instruction is added. Refer to “STB
(Rm) and “FROM Rn” for machine cycles, flags affected, and op-
code.

Under the following conditions,
R5=3843H, Ry1=94F1H, RAMBR=71H
when the following program is executed,
MOVEB (Ry4), Rs ;Rs(Low Byte)—>(Ry;) (FROM R5+STB (R44))
the result is (71:94F1H)=43H.
Also, under the following conditions,
Ro=89EOH, R;=438BH, RAMBR=70H
when the following program is executed,
MOVEB (R3), Ry ;Rg (Low Byte)>(R3) (STB (Rj))
the result is (70:438BH)=43H.

2-9-88

SNES DEVELOPMENT MANUAL

9.63 MOVES R,,, R,/
Operation: R, — R, (n,n’=0~15)
Description: This instruction loads the contents of register R,, specified in the

second operand, to register R,,, specified in the first operand.
Flags are set according to the data loaded.
(Refer to MOVE R,, R,,.)

Flags affected:

B |ALT1|ALT2| O/V | S cY Y4

0 O 0 * * - *
B : Reset
ALT1 : Reset
ALT2 : Reset
OoN : Set if Bit 7 is “1”, else reset
S : Set if Bit 15 is “1”, else reset
4 : Set when data is zero, else reset
Opcode:
(MSB) (LSB)
’ ~ 2n’H
MOVES R, R, olo|1]o0 n’ (OH~FH) ()
110] 11 n (OH~FH) (BnH)
Machine Cycles: ROM execution time 6 cycles
RAM execution time 6 cycles
Cache RAM execution time 2 cycles
Example: When R; is 4983H and

MOVES Ryo, Ry

is executed, the register Ry becomes 4983H and the overflow
flag is set.

2-9-89

DESCRIPTION OF INSTRUCTIONS

ER]
9.64 MOVEWR,, (R,)
MACRO INSTRUCTION

Operation: (Ry) — R, (Low Byte) (n=0~15, ’=0~11)
(Ry'+1) — R, (High Byte)
Note: If the contents of R,,’ are even, store the address equal
to the contents of (R,’+1) in the high byte of R,,. If the

contents of R, are odd, store the address equal to
(Ry’-1) in the high byte of R,,.

Conditions: If n=0:
then, use only LDW instruction,
else, use TO instruction and LDW instruction.

Description: This instruction loads hexadecimal data from the game pak RAM
address equal to the contents of register R,,’ specified in the sec-
ond operand and stores it into register R,, specified by the first
operand. The game pak RAM address bank is specified using
the RAMB instruction (refer to RAMB).

This macro instruction is stored in memory as “LDW (R,,))” or “TO
Ry’ + “LDW (R,).” The assembler automatically recognizes
whether or not the TO instruction is required. When n is not
equal to O, the TO instruction is added. Refer to “LDW (R,,)” and
“TO R, for machine cycles, flags affected, and opcode.

Example: Under the following conditions,

R4=6480H, (71:6480H)=2EH, (71:6481H)=COH,
RAMBR=71H

and when the following program is executed,

MOVEW Rs, (Rg) ;(Rg)—Rs(Low Byte) (TO Rs + LDB (Rg))
:(Rg+1)—R5(High Byte)

register R5 becomes CO2EH.
Also, under the following conditions,

Rg=0822H, (70:0822H)=43H, (70:0823H)=96H,
RAMBR=70H

and when the following program is executed,

MOVEW Ry, (Rg) ;(Rg)—Ro(Low Byte) (LDB (Rg))
|(Rg+1)—>Ry(High Byte)

register Ry becomes 9643H.

2-9-90

SNES DEVELOPMENT MANUAL

9.65 MOVEW (R.), R,
MACRO INSTRUCTION

Operation:

Conditions:

Description:

Example:

R, (low byte) — (R,") (n=0~15, n’=0~11)
R, (high byte) — (R, +1)

Note: If the contents of R, are even, store the high byte of R,,
into the address equal to the contents of (Ry’'+1). If the
contents of R’ are odd, store the high byte of R,, into
the address equal to the contents of (R,-1).

If n=0:
then, use only STW instruction,
else, use FROM instruction and STW instruction.

This instruction stores the contents (hexadecimal data) of regis-
ter R,, specified in the second operand into the game pak RAM
address which is equal to the value of register R,,’ specified in
the first operand. The game pak RAM address bank is specified
using the RAMB instruction (refer to RAMB). The operand n’ can
be a register from Ry~Ry1.

This macro instruction is stored in memory as “STW (R,)” or
“FROM Ry” + “STW (R,,).” The assembler automatically recog-
nizes whether or not the FROM instruction is required. When n is
not equal to 0, the FROM instruction is added. Refer to “STW
(Rm) and “FROM R,” for machine cycles, flags affected, and op-
code.

Under the following conditions,
Rg=BFA3H, R,y=4444H, RAMBR=71H

and when the following program is executed,

MOVEW (R10), Rg ;RQ(LOW BVtE)—')(R10) (FROM R9+STW (R10))

;Rg(High Byte)—>(Ryo+1)
the result is (71:4444H)=A3H, (71:4445H)=BFH.

2-9-91

DESCRIPTION OF INSTRUCTIONS

1

Also, under the following conditions,
Ro=3151H, Rg=92A0H, RAMBR=71H
and when the following program is executed,

MOVEW (Rg), Ry .Ro(Low Byte)—>(Rg) (STW (Rg))
;Ro (High Byte)—(Rg+1)

the result is (71:92A0H)=51H, (71:92A1H)=31H.

2-9-92

SNES DEVELOPMENT MANUAL

L

9.66 MULT R,
Operation:

Description:

Flags affected:

Sreg (low byte) * R, (low byte) — Doy (n=0~15)

This instruction performs 8 x 8-bit signed multiplication using the
low byte of the source register and the low byte of register R,,.
The result is stored in the destination register.

The source and destination registers are specified in advance
using a FROM, WITH, or TO instruction. When not specified, the
source and destination registers default to R,.

The operand can be a register Ryp~Rys.

B |ALT1[ALT2| O/V | S CcY y4

O O O - * - *

Opcode:

MULT R,

Machine Cycles:

Note:

Example:

B : Reset

ALT1 : Reset

ALT2 : Reset

S : Set when the result is negative, else reset.
Z : Set on zero result, else reset.

(MSB) (LSB)
110|l0]0 n (OH~FH) (8nH)

ROM execution time 3 or 5 cycles
RAM execution time 3 or 5 cycles
Cache RAM execution time 1 or 2 cycles

The number of cycles depends upon the CFGR register.
Under the following conditions,

Sreg' Rs: Dreg: R
Rs= 52CFH, Ry= 63CFH

the register R, becomes 0961H when
MULT R,

is executed.

2-9-93

DESCRIPTION OF INSTRUCTIONS

R ’ ——m
9.67 MULT #n

Operation: Sreg (low byte) * #n — D4 (n=0~15)

Description: This instruction performs 8 x 8-bit signed multiplication using the

low byte of the source register and the immediate data specified
in the operand #n. The result is stored in the destination register.

The source and destination registers are specified in advance
using a FROM, WITH, or TO instruction. When not specified, the
source and destination registers default to R,

The operand can be immediate data from 0~15.

Flags affected:
B |[ALT1|ALT2{ O/V | S CY y4
O O 0 - * _ *
B : Reset
ALT1 : Reset
ALT2 : Reset
S : Set when the result is negative, else reset.
Z : Set on zero result, else reset.
Opcode: (MSB) (LSB)
oo 1|1]| 1] 1] 1] 0] (3EH)
MULT #
"11]olofo| nEH-FH) | (8nH)
Machine Cycles: ROM execution time 6 or 8 cycles
RAM execution time 6 or 8 cycles
Cache RAM execution time 2 or 3 cycles
Note: The number of cycles depends upon the CFGR register.
Example: Under the following conditions,

Sreg: Rs, Dreg:R4, R3= 95C6H
the register R4 becomes FDF6H when
MULT #9

is executed.

2-9-94

SNES DEVELOPMENT MANUAL

B

9.68 NOP
Operation: PC « PC+1
Description: This instruction causes the processor to idle for one cycle and in-
crement the program counter by one.
Flags affected:
ALT1 [ALT2| OV CYy Z
0 0 - - -
B : Reset
ALT1 : Reset
ALT2 : Reset
Opcode: (MSB) (LSB)
NOP 0|0 0 0| 1| (01H)
Machine Cycles: ROM execution time 3 cycles
RAM execution time 3 cycles
Cache RAM execution time 1 cycles

2-9-95

DESCRIPTION OF INSTRUCTIONS

=]
9.69 NOT
Operation: Sreg — Dreg
Description: This instruction calculates the 1’s complement of the source reg-
ister and stores the result in the destination register.
The source and destination registers are specified in advance
using a FROM, WITH, or TO instruction. When not specified, the
source and destination registers default to R,.
Flags affected:
B [ALT1[ALT2| OV | S CcYy y4
0 O O - * - *
B : Reset
ALT1 : Reset
ALT2 : Reset
S : Set when the result is negative, else reset.
4 : Set on zero result, else reset.
Opcode: (MSB) (LSB)
NOT o100 | 1|1 1] 1] (4FH)
Machine Cycles: ROM execution time 3 cycles
RAM execution time 3 cycles
Cache RAM execution time 1 cycles
Example: Under the following conditions,

Sreg: Ro, Dreg: Ris
Bit15 Bit0
0

Ro:[1] 0[1[1]o] 1] 1] 1] o] 1] 1]o] o] 1] o] 0] (B764H)
the execution of
NOT
results in:
Bit15 Bit0

Ryz:[O 1] oJoJ 1] o] o] o] 1] oJo[1] 1] o] 1] 1] (489BH)

2-9-96

SNES DEVELOPMENT MANUAL

9.70 ORRn
Operation: Sreg OR R = Dygq (n=1~15)
Description: This instruction performs logical bit-wise OR on corresponding
bits of the source register and the register specified in the oper-
and R;,. The result is stored in the destination register.
The source and destination registers are specified in advance
using a FROM, WITH, or TO instruction. When not specified, the
source and destination registers default to Ry,
The operand can be a register Ry~Rys.
Flags affected:
B |ALT1[ALT2| O/NV | S CcY p4
O 0 O - * - %*
B : Reset
ALTA : Reset
ALT2 : Reset
S : Set when the result is negative, else reset.
y4 : Set on zero result, else reset.
Opcode:
(MSB) (LSB)
ORR, 111]0|0 n (1H~FH) (CnH)

Machine Cycles:

ROM execution time 3 cycles
RAM execution time 3 cycles
Cache RAM execution time 1 cycles

2-9-97

DESCRIPTION OF INSTRUCTIONS

1
Example: Under the following conditions,
Sreg: Ra: Dreg’ Rs
Bit15 Bit0
Ryl Of 1] 1]o]ofo] 1] 1] o] 1] 1o] 1] 0] o| 0| (6368H)

Bit15

Ry 0/ o]ol1fo] 1] 1] 0] 1]of[of0] 1] 1|OIO|(1680H)

the register R5 becomes:
Bit15

Rg:| O] 1] 111] o] 1] 1] 1] 1|1|1]ol1|1|0Jo0

when
OR R,

is executed.

2-9-98

(77ECH)

SNES DEVELOPMENT MANUAL

9.71 OR #n
Operation: Sreg OR #n — Dreg (n=1~15)
Description: This instruction performs logical bit-wise OR on corresponding

bits of the source register and the immediate data specified in
the operand #n. The result is stored in the destination register.

The source and destination registers are specified in advance
using a FROM, WITH, or TO instruction. When not specified, the
source and destination registers default to Ry,

Flags affected:

B |ALT1|ALT2| O/V | S CcY Y4

0 0 O - * - *
B : Reset
ALT1 : Reset
ALT2 : Reset
S : Set when the result is negative, else reset.
4 : Set on zero result, else reset.
Opcode: (MSB) (LSB)
O 0| 1|1 (1|1 1| 0] (3EH)
OR #
: 1{1[0[0| n(H-FH) | (CnH)
Machine Cycles: ROM execution time 6 cycles
RAM execution time 6 cycles
Cache RAM execution time 2 cycles
Example: Under the following conditions,
Sreg R7, Dreg: Rs
Bit15 Bit0
Ry Ol 1]o[1[1] 1] 1] 1] 1 o[1JoJ o] o] 1] o] (5FA2H)

the register R5 becomes:
Bit15 Bit0
Rs:[O] 1[O[1[1] 1T 1] T 1] o 1Jo[o[1] 1] 1] (5FA7H)

when

OR #5H
is executed.

2-9-99

DESCRIPTION OF INSTRUCTIONS
J

9.72 PLOT

Description: This instruction plots the color code specified by the COLOR or
GETC instruction to locations X and Y specified by Ry and R».
After plotting, R4 will be incremented.

Flags affected:

B |ALT1|ALT2| OV | S CcYy y4

0 0 0 - - - -
B : Reset
ALT1 : Reset
ALT2 : Reset
Opcode: (MSB) (LSB)
PLOT 0f1]10j]0 | 1] 1] 0] 0] (4CH)
Machine Cycles: ROM execution time 3~48 cycles
RAM execution time 3~51 cycles

Cache RAM execution time 1~48 cycles

Note: Because this instruction uses the RAM buffer, the number of ma-
chine cycles varies depending upon the program.

2-9-100

SNES DEVELOPMENT MANUAL

9.73 RAMB
Operation: Sreg — RAMBR

Description: This instruction moves the low byte of the source register into the
game pak RAM bank register in order to specify the game pak
RAM bank when transferring data between game pak RAM and
multi-purpose registers. Note that the SCBR is used with the
RAMBR to specify the bank for plotting. The game pak RAM
bank register can only be changed with the RAMB instruction.
The initial value of this register is invalid.

The source register is specified in advance using a FROM or
WITH instruction. When not specified, the register defaults to
Ro.

Flags affected:

B |ALT1|ALT2| OV | S CcY Z

B : Reset
ALT1 : Reset
ALT2 : Reset

Opcode: (MSB) (LSB)
RAMB ofo0}| 1|1 (1] 1] 1| 0| (3EH)
Tp1]0(1 1] 1|1 1| (DFH)

Machine Cycles: ROM execution time 6 cycles
RAM execution time 6 cycles
Cache RAM execution time 2 cycles

Example: Under the following conditions,
Sreg" R3, Rg=0170H
the RAM bank register becomes 70H when
RAMB

is executed.

2-9-101

DESCRIPTION OF INSTRUCTIONS
]

9.74 ROL
Operation:
CY D15 Sreg DO
et F - - 4]
D15 Dreg DO
L] [] L]
Description: This instruction shifts all bits in the source register one bit to the

left. Bit 15 is shifted to the carry flag and the carry flag is shifted
to Bit 0. The result is stored in the destination register.

The source and destination registers are specified in advance
using a WITH, FROM, or TO instruction. When not specified, the
source and destination registers default to R.

Flags affected:

B |ALT1|ALT2| O/V | S CcY Z

O 0 0 - * * *
B : Reset
ALT1 : Reset
ALT2 : Reset
S : Set if result is negative, else reset.
CYy : Set if Bit 15 in source register is “17,
else reset.
y4 : Set on zero result, else reset.
Opcode: (MSB) (LSB)
ROL 0 0[{O0|O0O|O| 1] 0|0} (04H)
Machine Cycles: ROM execution time 3 cycles
RAM execution time 3 cycles

Cache RAM execution time 1 cycles

2-9-102

SNES DEVELOPMENT MANUAL

Example: Under the following conditions,

Sreg' Rs, Dreg: R4
cY bit15 bito
Rg:|0]0fo]1]1[1]o]1]o[1]olo]1]o[1]1] (1D4BH)

executing ROL results in:
CcYy bit15 bit0
Ry |0|0(1]1|1|0(1{0]|1|0[0O|1|O[1[1]1](3A97H)

2-9-103

DESCRIPTION OF INSTRUCTIONS

9.75 ROMB
Operation: Sreg = ROMBR
Description: This instruction moves the low byte of the source register into the

Flags affected:

game pak ROM bank register in order to specify the game pak
ROM bank when loading data from game pak ROM. The game
pak ROM bank register can only be changed with the ROMB in-
struction, but the contents can not be read. The initial value of
this register is invalid.

The source register is specified in advance using a FROM or
WITH instruction. When not specified, the source register de-
faults to R,

B |ALT1|ALT2| OV | S cYy Y4

0 0 0 - - - -
B : Reset
ALT1 : Reset
ALT2 : Reset
Opcode: (MSB) (LSB)
ROMB ol 0| 111 1 1 11 1| (3FH)

Machine Cycles:

Example:

11101 1] 11} 1] (DFH)

ROM execution time 6 cycles
RAM execution time 6 cycles
Cache RAM execution time 2 cycles

Under the following conditions,
Sreg: Rs, Rs= 0046H

the ROMBR becomes 46H when
ROMB

is executed.

2-9-104

SNES DEVELOPMENT MANUAL

9.76 ROR
Operation:
Sre
D15 9 DO CcY
~ + + e o o —+ + —
D15 Dreg DO
L] [] []
Description: This instruction shifts all bits in the source register one bit to the

right. Bit O is shifted to the carry flag and the carry flag is shifted
to Bit 15. The result is stored in the destination register.

The source and destination registers are specified in advance
using a WITH, FROM, or TO instruction. When not specified, the
source and destination registers default to Ry,

Flags affected:

B |ALT1[ALT2| O/V | S CcY V4

0 0 O - * * *
B : Reset
ALT1 : Reset
ALT2 : Reset
S : Set if result is negative, else reset.
CY : Set if Bit 0 in source register is “1”,
else reset.
‘ Z : Set on zero result, else reset.
Opcode: (MSB) (LSB)
ROR 11010 f1 01| 1] 1] (97H)
Machine Cycles: ROM execution time 3 cycles
RAM execution time 3 cycles

Cache RAM execution time 1 cycles

2-9-105

DESCRIPTION OF INSTRUCTIONS

Example: Under the following conditions,
Sreg: Ryq, Dreg: Ryo

CY bit15 bit0
[1] Rye:[0]o]o]1]1]t]o]1]o]1]o]o]1]o]1]1] (1DaBH)

executing ROR results in:

cY bit15 bit0
R{1]0Jofof1[1]1]o]1]o[1]o]o]1[o] 1] (8EASH)

2-9-106

SNES DEVELOPMENT MANUAL

9.77 RPIX
Operation: PIXEL COLOR from game pak RAM — Dreg
Description: This instruction loads the color data stored in game pak RAM

and stores it in the destination register. Because data in game
pak RAM is in the PPU format, it is first read to the color matrix
and subsequently stored in the destination register. The data is
then read from game pak RAM to the color matrix.

Flags affected:

B |ALT1|ALT2{ O/NV | S CcY Z

0 0 0 - * - *
B : Reset
ALT1 : Reset
ALT2 : Reset
S : Set when the result is negative, else reset.
4 : Set on zero result, else reset.
Opcode: (MSB) (LSB)
RPIX ofof(1}1 1|10} 1| (3DH)
Of1}10]0 |1 11 0| 0| (4CH)
Machine Cycles: ROM execution time 24~80 cycles

RAM execution time 24~78 cycles
Cache RAM execution time 20~74 cycles

2-9-107

DESCRIPTION OF INSTRUCTIONS

]

9.78 SBCR,

Operation:

Description:

Flags affected:

Sreg — Rn - CY Flag— Dyg (n=0~15)

This instruction subtracts the contents of the register specified in
the operand and the carry flag from the source register and
stores the result in the destination register.

Source and destination registers are specified in advance using
a WITH, FROM, or TO instruction. When not specified, the
source and destination registers default to R,

B |ALT1|ALT2| O/V | S | CY Z

O O 0 * * * *

Opcode:

SCB R,

Machine Cycles:

Example:

B : Reset
ALT1 : Reset
ALT2 : Reset
onv : Set on signed overflow, else reset
S : Set when the result is negative, else reset.
cYy : Set on unsigned overflow, else reset
4 : Set on zero result, else reset
(MSB) (LSB)
olo|1|1 1|1} 0| 1] (3DH)
oj1{1]0 n (OH~FH) (6nH)
ROM execution time 6 cycles
RAM execution time 6 cycles

Cache RAM execution time 2 cycles
Under the following conditions:
Sreg: R4, Dreg: Rg, R4=5682H, R5=3609H, CY Flag=1
register Rg becomes 2079H and the carry flag is reset when
SBC Ry

is executed.

2-9-108

gy —

9.79 SBK

Operation: Sreg — (Last game pak RAM address used)

Description: The game pak RAM address accessed when data is transferred
between game pak RAM and a multi-purpose register, for exam-
ple the LD and ST instructions, is buffered internally. When data
is to be stored to the last accessed game pak RAM address, this
buffer is used so that the address does not have to be specified
again in the op code. This is called “bulk processing”.

This instruction uses bulk processing to store the word data con-
tained in the source register to RAM.

The source register is specified in advance using a WITH or
FROM instruction. When not specified, the register defaults to

Ro-
Flags affected:
B |ALT1{ALT2| O/V | S CcY y4
0 0 0 - - - -
B : Reset
ALT1 : Reset
ALT2 : Reset
Opcode: (MSB) (LSB)

SBK | 1]0]|0|1]0]| 0| 0| 0] (90H)

Machine Cycles: ROM execution time 3~8 cycles
RAM execution time 7~11 cycles
Cache RAM execution time 1~6 cycles

Example: Under the following conditions,

(70:3230H)=51H, (70:3231H)=49H, RAMBR=70H

executing,
LM R4, (3230H)
INC R
SBK

will result in Ry=4952H, (70:3230H)=52H, and (70:3231H)=49H.

2-9-109

DESCRIPTION OF INSTRUCTIONS

e T e
9.80 SEX
Operation:
D15 D8 D7 D6 DO
Sreg Upper Byte Lower Byte
.y
Dreg Lower Byte
D15 D8 D7 D6 DO
Description: This instruction performs signed expansion of the low byte of the

source register, converts it to word data and stores it in the desti-
nation register.

This means that Bit 7 of the source register is stored in Bits 8 ~
15 of the destination register. The low byte is loaded directly
from the source register to the destination register.

The source and destination registers are specified in advance
using a WITH, FROM, or TO instruction. When not specified, the
source and destination registers default to Ry.

Flags affected:
B |ALT1|ALT2| O/V | S CcY Y4
0 O 0 - * - *
B : Reset
ALT1 : Reset
ALT2 : Reset
S : Set if the result is negative, else reset.
Z : Set on zero result, else reset.
Opcode: (MSB) (LSB)

SEX | 1|o|of1 o] 1] 0] 1] (95H)

Machine Cycles: ROM execution time 3 cycles
RAM execution time 3 cycles
Cache RAM execution time 1 cycles

2-9-110

SNES DEVELOPMENT MANUAL

Example: Under the following conditions,
Sreg: Rs, Drgg:R1, Rs= 9284H
the register Ry becomes FF84H when
SEX

is executed.

2-9-111

DESCRIPTION OF INSTRUCTIONS

7=

9.81 SM (xx), R,

Operation:

Description:

Flags affected:

R, (low byte) — (xx) (n=0~15, xx=0~65535)

R, (high byte) — (xx+1) When the contents of R, are
even, the high byte is
stored at address (R,+1);

When the contents of R, are
odd, the high byte is
stored at address (R,-1).

This instruction stores the contents of register R,,, specified in
the second operand, to the game pak RAM address which
equals the value of (xx), the first operand. The RAM bank must
be specified with the RAMB instruction. (Refer to RAMB.)

B [ALT1|ALT2| OV | S CY y4

0 0 0 - - - -
B : Reset
ALT1 : Reset
ALT2 : Reset
Opcode: (MSB) (LSB)
0|0 1|1 1] 1] 1] 0] (3EH
SM (xx), R, 10111 n (OH~FH) (FnH)
x (OOH~FFH) (ADRS Lower Byte)
x (OOH~FFH) (ADRS Upper Byte)
Machine Cycles: ROM execution time 12~17 cycles
RAM execution time 16~20 cycles

Note:

Example:

Cache RAM execution time 4~9 cycles
Because this instruction uses the RAM buffer, the number of cy-
cles varies depending upon the program.
Under the following conditions,

R4= 438CH and RAMBR=70H
the following program execution,

SM (0B492H), R,

will result in (70:B492H) =8CH, (70:B493H) = 43H.

2-9-112

SNES DEVELOPMENT MANUAL

9.82 SMS (yy), R,

Operation: R, (low byte) — (yy) (n=0~15, yy=0~510%)
Rn (high byte) — (yy+1)

*Note: Selectable RAM address (yy) must be an even number.

Description: Similar to SM, this instruction loads word data from register R,
specified in the second operand, and stores it in the game pak
RAM address equal to the value specified in the first operand,
yy. The selectable address is an even number 0~510. The bank
is specified with the RAMB instruction. This instruction uses the
short address method to reduce the number of bytes in the in-
struction code.

Flags affected:
B |ALT1[ALT2| O/V | S CY y4
0 0 0 - - - -
B : Reset
ALT1 : Reset
ALT2 : Reset
Opcode: (MSB) (LSB)
OO0 1|1 [1| 1] 1] 0/ (3EH
111111 n (OH~FH AnH
SMS (yy), R, OR-FH) | (AnH)
kk (OOH~FFH) (Address)
[Short address method]
This method is used by LMS, SMS and other instructions to re-
duce the number of bytes in the instruction code. One byte is
used for the address. The selectable address may be an even
number 0~510. The relationship between yy in the syntax and kk
in the opcode is:
yy =kk x 2
Machine Cycles: ROM execution time 9~14 cycles
RAM execution time 13~17 cycles
Cache RAM execution time 3~8 cycles
Note: Because this instruction uses the RAM buffer, the number of ma-

chine cycles varies depending upon the program.

2-9-113

DESCRIPTION OF INSTRUCTIONS

Example:

Under the following conditions,

Register R;y= ABCDH, RAMBR=71H

the following program is execution,
Syntax Opcode
SMS (194H), Ry4 3E AB CA

will result in (71:0194H) = CDH, (71:0195H) = ABH. The relation-
ship between syntax and opcode is as shown above.

2-9-114

9.83 STB (R,

Operation:

Description:

Flags affected:

Sreg (low byte) — (Rp) (m=0~11)

This instruction stores the low byte of the source register in the

game pak RAM address equal to the value in the register speci-
fied in the operand. The operand can be a register Ry~R4. The
game pak RAM bank must be specified with the RAMB instruc-

tion.

The source register is specified in advance using a WITH or
FROM instruction. When not specified, the register defaults to
Ro.

B |ALT1|ALT2| O/V | S CY Z

0 0 0 - - - -

Opcode:

STB (R,

Machine Cycles:

Note:

Example:

B : Reset
ALT1 : Reset
ALT2 : Reset

(MSB) (LSB)
olo|1|1]1]|1] 0| 1] (3DH)

ol o] 1]1 m (OH~BH) (3mH)

ROM execution time 6~9 cycles
RAM execution time 8~14 cycles
Cache RAM execution time 2~5 cycles

Because this instruction uses the RAM buffer, the number of ma-
chine cycles varies depending upon the program.

Under the following conditions,
Seg'Rs, R5=216CH, Rg=9A34H, RAMBR=70H
and when the following program is executed,
STB (Rg)
the result is (70:9A34H)=6CH.

2-9-115

DESCRIPTION OF INSTRUCTIONS

9.84 STOP
Operation: 0 — Goflag
Description: This instruction resets the GSU GO flag and stops the processor.
When this instruction is executed and the GSU stops, the Super
NES IRQ signal is initiated.
Flags affected:
B |ALT1|ALT2| O/V | S CcY Y4
0 0 0 - - - -
B : Reset
ALT1 : Reset
ALT2 : Reset
Opcode: (MSB) (LSB)
STOP 00100 |0| 0| O] O] (00OH)
Machine Cycles: ROM execution time 3 cycles
RAM execution time 3 cycles

Cache RAM execution time 1 cycles

2-9-116

SNES DEVELOPMENT MANUAL

9.85 STW (R,

Operation:

Description:

Flags affected:

Sreg (low byte) — (R, (m=0~11)

Sreg (high byte) — (R, +1) When the contents of R, are
even, the high byte is
stored at address (R,+1);

When the contents of R,, are
odd, the high byte is
stored at address (R,-1).

This instruction stores the contents of the source register into the
game pak RAM address specified in the operand, R,,,. The RAM
bank must be specified with the RAMB instruction. The operand
can be a register from Ry~Ry.

The source register is specified in advance using WITH or
FROM. When not specified, the register defaults to Ry,

B |ALT1|ALT2| OV | S 4 V4

0 0 0 - - - -

B : Reset

ALT1 : Reset

ALT2 : Reset
Opcode: (MSB) (LSB)

STW (R, oo} 1]1 m (OH~BH) (3mH)
Machine Cycles: ROM execution time 3~8 cycles
RAM execution time 7~11 cycles

Note:

Example:

Cache RAM execution time 1~6 cycles
Because this instruction uses the RAM buffer, the number of cy-
cles varies depending upon the program.
Under the following conditions,

Sreg:R10, R10=9326H, R,:5872H, RAMBR=70H
and when the following program is executed,

STW (Ro)

the result is (70:5872H)=26H, (70:5873H)=93H.

2-9-117

DESCRIPTION OF INSTRUCTIONS

B

9.86 SUB R,
Operation: Sreg — Rn = Dreg (n=0~15)

Description: This instruction subtracts the contents of the register specified in
the operand from the source register and stores the result in the
destination register.

Source and destination registers are specified in advance using
a WITH, FROM, or TO instruction. When not specified, the
source and destination registers default to Rg.

The operand can be any of registers Ry~Rjs.

Flags affected:

B |[|ALT1|ALT2| OV | S CY y4
O O O * * * *

B : Reset

ALT1 : Reset

ALT2 : Reset

OoN : Set on signed overflow, else reset.

S : Set if the result is negative, else reset

CcYy : Set on unsigned overflow, else reset
(Set on adder overflow.)

z : Set if result is zero.

Opcode: (MSB) (LSB)
SUBR, ol1|1]o0 n (OH~FH) (6nH)

Machine Cycles: ROM execution time 3 cycles
RAM execution time 3 cycles
Cache RAM execution time 1 cycles

Example: Under the following conditions:
Sreg: Rs: Dreg: Rs, Rs=735AH, Rg=426BH
the register R4 becomes 30EFH when
SUB Rg

is executed.

2-9-118

SNES DEVELOPMENT MANUAL

9.87 SUB #n

Operation:

Description:

Flags affected:

This instruction subtracts the immediate data specified in the op-
erand from the contents of the source register and stores the re-
sult in the destination register.

The source and destination registers are specified in advance
using a WITH, FROM, or TO instruction. When not specified, the
source and destination registers default to Ry.

The operand can be immediate data from 0-15.

B |ALT1[ALT2| O/V | S cY Z

O 0 O * * * *

Opcode:

SUB #n

Machine Cycles:

Example:

B : Reset
ALT1 : Reset
ALT2 : Reset
on : Set on signed overflow, else reset.
S : Set if the result is negative, else reset
CcY : Set on unsigned borrow, else reset
y4 : Set if result is zero.
(MSB) (LSB)

oo 1|1 1|1} 1| 0] (3EH)

oj1]1]0 n (OH~FH) (6nH)
ROM execution time 6 cycles
RAM execution time 6 cycles

Cache RAM execution time 2 cycles
Under the following conditions:

Sreg: Ro, Dreg: Ro, Ro=329BH
the register Ry becomes 3291H when

SUB #10

is executed.

2-9-119

DESCRIPTION OF INSTRUCTIONS

]

L
9.88 SWAP
Operation: Sreg (low byte) — Dyeq (high byte)
Sreg (high byte) — Dreg (low byte)
Description: This instruction swaps the low byte and high byte of the source

Flags affected:

register and stores the result in the destination register.

The source and destination registers are specified in advance
using a FROM, WITH, or TO instruction. When not specified, the
source and destination registers default to R,

B |ALT1|ALT2| O/V | S cY y4

0 0 0 - * - *

B : Reset

ALT1 : Reset

ALT2 : Reset

S : Set when the result is negative, else reset.
Z : Set on zero result, else reset.

Opcode: (MSB) (LSB)
SWAP 0j1]101|0O0 1 11 0| 1| (4DH)

Machine Cycles:

Example:

ROM execution time 3 cycles
RAM execution time 3 cycles
Cache RAM execution time 1 cycles

Under the following conditions:
Sreg: R3, Dreg: Ry3, R3=48D0H
the register Ry3 becomes D048H when
SWAP

is executed.

2-9-120

SNES DEVELOPMENT MANUAL

9.89 TOR,
REGISTER PREFIX INSTRUCTION
Operation: lfBFlag=0 then set Dyeg to Ry,
else Syeg = Ry, (n=0~15)
Description: This instruction specifies register R, as the destination register.
The destination register can be any of registers Ry ~ Rys.
If the B flag has been set (i.e., if a WITH instruction was execut-
ed immediately prior to this instruction) the contents of the
source register are loaded to R, (refer to MOVE R,, R,).
Flags affected:
B |ALT1|ALT2| O/V | S CcY z
No flags affected
Opcode: (MSB) (LSB)
TOR, o|0| 0|1 n (OH~FH) (1nH)
Machine Cycles: ROM execution time 3 cycles
RAM execution time 3 cycles
Cache RAM execution time 1 cycles
Example: Under the following conditions:

Rg= 7106H, R3=0028H

the register R, becomes 712EH when the following program is

executed.
FROM Re
TO R4
ADD Rj

2-9-121

DESCRIPTION OF INSTRUCTIONS

9.90 UMULT R,

Operation:

Description:

Flags affected:

Sreg (low byte) * Ry, (low byte) — Dygq

This instruction performs 8 x 8-bit unsigned multiplication using
the low byte of the source register and the low byte of register
Rn, specified in the operand. The result is stored in the destina-
tion register.

The source and destination registers are specified in advance
using a FROM, WITH, or TO instruction. When not specified, the
source and destination registers default to R,

B |ALT1|ALT2| OV | S CcY Z

o 0 0 - * - *

Opcode:

UMULT R,

B : Reset

ALT1 : Reset

ALT2 : Reset

S : Set when the result is negative, else reset.
Z : Set on zero result, else reset.

(MSB) (LSB)
ojlo|1|1|1|1]o0] 1] (3DH)
1] olo|o]| n(OH-FH (8nH)

Machine Cycles: ROM execution time 6 or 8 cycles

Note:

Example:

RAM execution time 6 or 8 cycles
Cache RAM execution time 2 or 3 cycles

The number of cycles depends on the CONFIG register setting.
Under the following conditions,

Sreg: R3, Dreg: Ro, Ra= 364FH, Rg= B2CFH
the register Ry becomes 3FE1H when

UMULT Rg

is executed.

2-9-122

SNES DEVELOPMENT MANUAL

r

2-9-123

INTRODUCTION TO DSP1

[P ~ =
Chapter 1 Introduction to DSPI1

Digital Signal Processor (DSP1) is a 16-bit fixed point digital signal processor designed as a co-
processor for the Super Nintendo Entertainment System (Super NES). It provides the Super NES
programmer with advanced, high speed, pseudo three-dimensional programming capabilities.
These functions are possible through the use of a command set held by the DSP1’s internal ROM.

1.1 SUPER NES CPU SUPPORT

DSP1 supports processing of the Super NES CPU through parallel operation. The
increased processing speed and advanced processing capability greatly improves -
the realism of Super NES games.

1.2 PSEUDO 3-DIMENSIONAL GRAPHICS

Because numerous commands for 3-dimensional graphics are incorporated,
DSP1 is especially useful for 3-dimensional games, such as those involving flight
simulation.

1.3 COMPLEX MATH PROCESSING

General purpose commands for complex math calculation are also included within
the DSP1 ROM. Calculations can be executed much faster than with the Super
NES CPU. Therefore, DSP1 is useful in games which require high speed multipli-
cation, division, and calculation of trigonometric functions.

1.4 SYSTEM BLOCK DIAGRAM

The system block diagram, on the following page, illustrates the means by which
the DSP1 is connected to the Super NES.

3-1-1

SNES DEVELOPMENT MANUAL

"O/I Bleg dSQ 40} spuewiwod 340O1S/QVOT 84l seindexe NdD SN Jedng ey
"V sng Aq pejosuuod aie Ndo SN Jedng pue 1 4Sq eyl

3DAIHLIHVYI 4SA_
'sng ¥ | | t
" Aowsy |NdD wveA || ndd VY Hom ndo
" ndv S3NJedng | |SINJedns || LiIgW t S3N Jadng
sng g ! | | | t
" S3N H3dNns

System Block Diagram (DSP1)

Figure 3-1-1

3-1-2

INTRODUCTION TO DSP1

]

1.5

DSP1 OPERATION
1.5.1 COMMAND EXECUTION

The DSP1 receives commands from the Super NES CPU and returns the

results of its computations.

Command Parameters

Super NES

CPU <F%esults of Computatio

Figure 3-1-2 Super NES CPU and DSP1 Communications
Command execution between the Super NES and DSP1 is demonstrated

below.

1) Command (Multiplication: 1 byte)
2) Parameter 1 (Multiplicand 16 bits)
3) Parameter 2 (Multiplier 16 bits)

Super NES

\ ///

CPU

Command reception
and interpretation

4) Computation
5) Computation Result (16 bits)

Figure 3-1-3 DSP1 Command Execution

DSP

"02 ®POW Ul SHEN 8 S! Aloeded WOY wnuwixew ay] g 810N
"1dSQ 104 Hod sjum/peal By} Se HO00D/HO008 @S :| BION

HO00D vivd
AluQ pesy

SS3yAav| oe d€
(0g) (1g)

A

v3dv d4Sa

H0009
H0008

V4

MODE 20/DSP

1.6.1

1.6 MEMORY MAPPING

SNES DEVELOPMENT MANUAL

He444) &]
= 00 4H0 Oc d42Pp€ HePv HJviPs 4H4S109 H490/40Z m..RFm 4806 4H6pVY 4vpgd 49pP0 40pad 4a03 43pd 44
— Japsiboy
Ssaippy yueg
(dsarepon 02) dep Alowsiy S3N Jadns

3-1-4

Mode 20/DSP Memory Map

Figure 3-1-4

INTRODUCTION TO DSP1

MODE 21/DSP

1.6.2

'suonesado | 4SQ 40 Hod 8ium/peal 8yl Se HO00L/HO009 3SN : 1 S10N

HO009
HO000.

H444Z

SlIM/PESY
viva

AuQ peay
SN1VILS

SS3HAAv

00 40
(08) (48)

v3a

Hv dSd

H0000
paly —
dSd- abpLy % uo) |
e9IY WYH 110M
HO0009 b
H0008 4 /// pajy
> WOH Weiboig
HA444 o
P PO H0p! HipPc HciPE€ HE€Py Jvi0S 4909 J90L Q3408 H806 4H6pY 4vipg 49pO 40 TQ 4qp3 43 vm o4
“— Jojsibay

$SaIppy Yueg

(dsarepon 12) depy Atowsy SIN 12dng

Mode 21/DSP Memory Map

Figure 3-1-5

3-1-5

SNES DEVELOPMENT MANUAL

Chapter 2 Command Summary
COMMAND CLOCK |PROCESSING
TYPE NAME FUNCTION CODE| CYCLES | TIME (usec)
General |Multiply 16-bit multiplication | 00H 26 3.4
Calculation (decimal, interger)
Inverse Inverse calculation 10H 98 12.9
(floating point)
Triangle Trigonometric 04H 59 7.8
calculation (sin, cos)
Vector [Radius Vector size 08H 34 45
Calculation calculation
Range Vector size 18H 38 5.0
comparison
Distance Vector absolute 28H 156 20.5
value calculation
Coordinate [Rotate 2-D coordinate O0CH 65 8.6
Calculation rotation
Polar 3-D coordinate 1CH 147 19.3
rotation
Projection |Parameter |Projection parameter| 02H 892 117.4
Calculation setting
Raster Raster data O0AH |224+209(n-1){29.5+27.5(n-1
calculation 1AH [224+208(n-1)|29.5+27.4(n-1
Project Object projection 06H 627 82.5
calculation
Target Coordinate OEH 228 30.0
calculation of a
selected point on
the screen
Attitudel Attitude Set attitude (1)11H 1%2 %1 g
Contro 21H 164 216
Objective | Convert from global | ODH 45 5.9
to object coordinates| 1DH 45 5.9
2DH 45 5.9
Subjective | Convert from object | 03H 44 5.8
to global coordinates| 13H 44 5.8
23H 44 5.8
Scalar Calculation of inner | 0BH 36 4.7
roduct with the 1BH 36 4.7
orward attitude and | 2BH 36 4.7
a vector
New Angle | Gyrate 3-D angle 14H 444 58.4
Calculation rotation
Table 3-2-1 DSP1 Command Summary
Note 1. The “n” in the processing speed and clock cycle columns indicates the number
of times a process is repeated.
- Raster data calculation: The number of rasters calculated.
- Data ROM read: Number of words in the ROM read.
Note 2. For commands with multiple codes, refer to the description of each command.

3-2-1

PARAMETER DATA TYPE
[. . |

Chapter 3 Parameter Data Type

The conventions used in the table below are employed throughout this manual when re-
ferring to parameters.

PARA- #
METER DESCRIPTION BITS DATA RANGE UNIT
A | Angle 8 | -m~+m(-180°~+180°) [2n/26
T Fixed Point Decimal 16 | -1.0 ~ +0.999969--- | 215
I8 Integer with decimal part (fixed point) 16 [-128.0 ~ +127.996093°:| 28
I Integer 16 -32768 ~ +32767 1
2| Double integer 17 -65536 ~ +65534 2
Cl Cyclic integer 16 | »-32768~+32767 — | 1
U Integer without a sign 16 0 ~ 65535 1
D Double precision integer 32 -2147483648 ~ 1
+2147483647
L Low digit of double precision integer 16 --- ---
H High digit of double precision integer 16 ---
D2 | Double precision half integer 32 -1073741824 ~ o-1
+1073741823
L2 | Low digit of double precision half integer| 16 ---
H2 | High digit of double precision half integer| 16 --- -
M Floating point coefficient 16 | -1.0 ~ +0.999969- - - 1
C Floating point exponent 16 -32768 ~ +32767 1

Table 3-3-1 Parameter Data Type

Note 1. The data transfer between the Super NES CPU and DSP1 is carried out
in 16 bits regardless of the number of bits in each parameter selection
shown in the above table.

Note 2. Though the resolution of the double precision semi-integer (D2) is 2°1, it is
actually handled as an integer because the lowest bit is always used as
0.

Note 3. The exponent of a floating point number (C) can be stored in the range of
8002H to 7FFFH (-32766 to 32767).

3-3-1

SNES DEVELOPMENT MANUAL

Chapter 4 Use of DSP1

4.1

DSP1 DR REGISTER

DSP1 processes Super NES CPU commands and parameters using an internal
DR register that is mapped in the Super NES CPU “A” bus.

Commands and parameters are sent from the Super NES CPU to DSP1. Specifi-
cally, data is written to the memory-mapped DR register using the STORE com-
mand. The Super NES CPU and DSP1 do not perform handshaking operations.
The Super NES CPU waits while DSP1 processes data, before sending the next
data.
Super NES
Memory Map DSP1
0000 [BF 00

6000

DF}A‘Register
ccess
7000 SRAHegister
7FEF ccess

Figure 3-4-1 Super NES/DSP1 Memory Mapping (Mode 21)

DSP1 decodes commands, processes them according to the assigned parame-
ters, and writes the results to the DR register. The Super NES CPU waits, while
DSP1 processes the data, then reads the DR register using the LOAD command
to obtain the resuits.

The DR register has 2 input/output modes, 8 bit and 16 bit. The DSP1 receives
each command in the 8 bit mode. Once the command is received, the DR register
is changed to the 16 bit mode. All input/output data is transferred in the 16 bit
mode. The DR register mode is controlled by the DSP1 Status register.

3-4-1

USE OF DSP1

E

SR

4.2

4.3

4.4

DSP1 STATUS REGISTER

The status register is a 16-bit register which holds the status bits needed by the
DSP1 to transfer data to and from external devices. The upper 8 bits can be read
from an external device through pins DO through D7 of DSP1. Only bit 15 is used
by the Super NES. This bit is referred to as “RQM”

D15 D14 D13 D12 D11 D10 D9 D8

T P e e et

D7 D6 D5 D4 D3 D2 Di DO

A AA A AL AL A

Figure 3-4-2 DSP1 Status Register Configuration

RQM

This bit indicates that the DSP1 is requesting data read from the Super NES CPU.
The bit is “0” when the DSP1 is busy and “1” when it is ready to read or write. :

DMA TRANSFER

Although DSP1 is capable of DMA data transfer, it is not supported by the Super
NES system due to current hardware configuration.

3-42

SNES DEVELOPMENT MANUAL

BT

4.5 OPERATION SUMMARY

The following figure shows the relationship and basic operations of the Super
NES CPU and DSP1.

(Super NES CPU Operations)

(__ DSP1Operations)

| Normal Program Processing | | v
__________ l““—“"““ : Command Input Wait
Issue Command ' .
(Write Data to DSP1) S DR Write_,

Command Decode

!

Parameter Input Wait

Repeat
Set Parameters _______DRWwrite
(Write Data to DSP1) ! ’
v ' Command Execution
Wait

(Wait for RQM Bit to Set)

|
:
t
: Send Processing Results to DR
|
1

(Read DSP1 Data)

Repeat
f Read Processing Results

Figure 3-4-3 DSP1 Operations Flow Diagram

3-4-3

USE OF DSP1

(ZHW 9°2)

sjusjuo) Jaisibay O speay 1dsa

onlls
(C:19) SVA9) ((:19) ((W) scxacx asx::xs:x @x avx Sx@x@xi ©AERAWM uo mern_“
uonodnsu| uononiisuj (sewn g x sjq 8)
HM tdSd
61 MO (ass$) eje
x X slq mv'/._waajx siq “\@304 QAu._o_._s._.%on_vamW:_XNVAEo,r_.uMMMMW:_XE Ec;nww_.usbm:_ mmZﬁ‘__w_.Mnﬂ_dw
1338169y 9 JO sjudU0)
X €+dd Xi+1nodsaf Lnodsa X 2+dd X +0od X 9d SSopPY 2
‘Jsu
X X 1NOdSa V1S ot
NdD S3N 13dng je ssaippy n_mo\ﬁ
(zHW89'2)

S3N Jedng

Buiwi] [euonesado 1LdSA/NdD S3AN Jadng

Super NES CPU/DSP1 Operational Timing

Figure 3-4-4

3-4-4

SNES DEVELOPMENT MANUAL

Chapter 5 Description of DSP1 Commands

5.1 GENERAL CALCULATION
5.1.1 16-BIT MULTIPLICATION (DECIMAL, INTEGER)

Name: Multiply
Code: 00H™3
Parameters: Input k[T/I] Multiplicand
I[T/1] Multiplier
Output M[T/H2] Product (rounded fraction < 15
bits)
Function: This command determines the product, M, of decimal K

and |. The command can also determine the product of
integers [1], wherein the result of the calculation is a dou-
ble precision half integer (H2).

Equation 5-1:
kx|l =M
Number of Process Cycles: Input 1. Command Input 6
2. k input 12
3. linput 4
Output 1. M output 4

*Notes: 1. Parameters are input/output via the DR register.

2. Parameters are input/output in the order shown above. The
number of cycles is the period until the next parameter can
be selected or the results of the calculation can be read.

3. OOH is a hexadecimal code.

Example: This is a general command used in all types of calculations.

3-5-1

DESCRIPTION OF DSP1 COMMANDS

|

5.1.2

INVERSE CALCULATION (FLOATING POINT)

Coefficient
Exponent (8002-7FFFH)

Coefficient
Exponent (8002-7FFFH)

This command determines the inverse of a floating point

Name: Inverse
Code: 10H
Parameters: Input: a[M]
b[C]
Output: A[M]
B[C]
Function:
decimal number.
Equation 5-2:

1

5 = A x2B
ax

Number of Process Cycles: Input

*Notes: 1.
2.

Example:

Output

1. Command Input 6

2. ainput 13
3. b input 73
1. A output 2
2. B output 4

Parameters are input/output via the DR register.

Parameters are input/output in the order shown above. The
number of cycles is the period until the next parameter can
be selected or the results of the calculation can be read.

This is a general command used in all types of calculations.

3-5-2

SNES DEVELOPMENT MANUAL

R T _ : =
5.1.3 TRIGONOMETRIC CALCULATION
Name: Triangle
Code: 04H
Parameters: Input: 0[A] Angle
T/l Radius
Output: S[T/1] sin
C[mn cos
Function: This command determines the product of the sin of an-

gle 6 and radius r, and the product of the cosine and ra-
dius r. When the radius is an integer [l], the results are
also an integer.

Equation 5-3:
C = r(cosH) S = r(sin6)
Y
I
|
|
L
C X
Figure 3-5-1 Trigonometric Calculation
Number of Process Cycles: Input 1. Command Input 6
2. 0 input 12
3. rinput 34
Output 1. S output 3
2. C output 4

*Notes: 1. Parameters are input/output via the DR registers.

2. Parameters are input/output in the order shown above. The
number of cycles is the period until the next parameter can
be selected or the results of the calculation can be read.

Example: [sin®, cos® calculation]
Set r=1 to calculate sin6 and cosé.

[Vector component calculation]
Determines the X and Y components for a two-dimensional
vector whose size and direction are known.

This is a general command which can be used in other types
of calculations.

3-5-3

DESCRIPTION OF DSP1 COMMANDS

5
5.2 VECTOR CALCULATION
5.21 VECTOR SIZE
Name: Radius
Code: 08H
Parameters: Input: x[1] X component of the vector
y[l] Y component of the vector
zZ[l] Z component of the vector
Output: L [L2] Vector size squared (lower)
Ly[H2] Vector size squared (upper)
Function: This command determines vector size (square of the
absolute value).
Equation 5-4:

X

Figure 3-5-2 Vector Calculation

The absolute value of the vector R = J/L is determined
by the Distance command.

Number of Process Cycles: Input 1. Command Input 6
2. X input 14

3.y input 4

4. z input 4

Output 1. L output 2

2. Ly output 4

*Notes: 1. Parameters are input/output via the DR registers.
2. Parameters are input/output in the order shown above. The
number of cycles is the period until the next parameter can
be selected or the results of the calculation can be read.

SNES DEVELOPMENT MANUAL

Example: [Distance between two points]
This command is useful for calculating the distance between
two points. The command calculates the square of distance
between two points, and may be used for calculating compar-
ative data. One point of the vector is assumed to be X=0, Y=0
and Z=0.

3-5-5

DESCRIPTION OF DSP1 COMMANDS

e
5.2.2 VECTOR SIZE COMPARISON

Name: Range
Code: 18H
Parameters: Input: x[T/1] X component of the vector

y[T/1] Y component of the vector

Z[T/ Z component of the vector

r[T/1] Range to be compared against

the vector size (sphere radius)

Output: D[T/H2] Difference between the vector
size and the specified range.

Function: This command subtracts the square of the specified
range from the square of the vector size. This command
compares the vector size and the distance from a partic-
ular point, and so may be used to determine if a point is
within the sphere. The parameters can be either decimal
or integer.

Equation 5-5:
x2+y2+22-r2 =D

X
Figure 3-5-3 Vector Size Comparison
Number of Process Cycles: Input 1. Command Input 6
2. X input 12
3.y input 4
4. z input 4
5. rinput 8
Output 1. D output 4

*Notes: 1. Parameters are input/output via the DR registers.
2. Parameters are input/output in the order shown above. The
number of cycles is the period until the next parameter can
be selected or the results of the calculation can be read.

Example: [Detects a collision in three-dimension]
This command determines if an object is within a certain
range of a point. It can be used to detect three-dimensional
collisions. '

3-5-6

SNES DEVELOPMENT MANUAL

5.2.3 VECTOR ABSOLUTE VALUE CALCULATION
Name: Distance
Code: 28H
Parameters: Input: x[I/T] X component of the vector
y[I/T] Y component of the vector
Z[I/T] Z component of the vector

Output: R[I/T] Vector size

Function: This command determines vector size (absolute value).
The parameters can be either decimal or integer.

Equation 5-6: Jx2+y2:+22-R

Figure 3-5-4 Vector Absolute Value Calculation

Number of Process Cycles: Input 1. Command Input 6
2. x input 15
3.y input 4
4. z input 127
Output 1. R output 4

*Notes: 1. Parameters are input/output via the DR registers.

2. Parameters are input/output in the order shown above. The
number of cycles is the period until the next parameter can
be selected or the results of the calculation can be read.

Example: [Distance between two points]
This commands calculates the distance between two 3-D
points on the coordinate. In contrast to the Radius command.

3-5-7

DESCRIPTION OF DSP1 COMMANDS

5.3

COORDINATE CALCULATION
5.3.1 TWO-DIMENSIONAL COORDINATE ROTATION

Name:
Code:
Parameters:

Function:

Equation 5-7:

Rotate

0CH

Input: 6[A]
xq1]
y4[l]

Output: x5[1]
yall]

Angle of rotation about the Z
axis (counterclockwise)

X coordinate before rotation
Y coordinate before rotation

X coordinate after rotation
Y coordinate after rotation

This command determines the (X,Y) coordinates after
rotating (x,y) counterclockwise for .

(X}, ¥y) {cose —sine] = (X, Y,)

sin6 cosH

Yol------

Yij--4--

\
|
|
1
1
+
1
1
[}
1
1

0

X

X4

Figure 3-5-5 Two-Dimensional Coordinate Rotation

Number of Process Cycles: Input

Output

1. Command Input 6

2. 0 input 12
3. x4 input 3
4.y, input 37
1. X, output 2
2.y, output 4

*Notes: 1. Parameters are input/output via the DR registers.
2. Parameters are input/output in the order shown above. The
number of cycles is the period until the next parameter can
be selected or the results of the calculation can be read.

Example: [Coordinate calculation for rotating an object on a surface]
This command calculates the coordinates of an object after it
is rotated on a surface. :

3-5-8

SNES DEVELOPMENT MANUAL

5.3.2 THREE-DIMENSIONAL COORDINATE ROTATION

Name: Polar

Code: 1CH

Parameters input: 6[A] Angle of rotation about the Z
axis (positive from the Y axis to
the X axis)

0[A] Angle of rotation about the X
axis (positive from the Z axis to
the Y axis)

o[A] Angle of rotation about the Y
axis (positive from the X axis to
the Z axis)

x[1] X coordinate before rotation

Vil Y coordinate before rotation

Z[l] Z coordinate before rotation

Output: X[i] X coordinate after rotation

Y[l] Y coordinate after rotation

VALl Z coordinate after rotation

Function: This command determines the (X,Y,Z) coordinates

when rotating (x,y,z) three-dimensionally. Rotation is
performed in the order of ¢ about theY axis, ¢ about the
X axis, and 6 about the Z axis.

Equation 5-8:

cosg O sing(|l O 0 ||cosB -sinB 0
(XY¥,2)| 0 1 0 ||0cos¢-sing||sind cosd o = (X,Y,2)
-sing 0 cos@||0 sing cosd|| O 0 1

Z V4
A A
¢
0 — Y 0 Y
X X
Rotation on Y axis Rotation on X axis

3-5-9

DESCRIPTION OF DSP1 COMMANDS

J

Rotation on Z axis

Note: To be compatible with the projection and attitude-
control commands, the X axis shall be east-west
(east = +), the Y axis shall be north-south (north =
+), and the Z axis shall be up and down (up = +).

Number of Process Cycles: Input 1. Command Input 6
2. 0 input 13
3. ¢ input 3
4. ¢ input 2
5. x input 2
6.y input 2
7. z input 107
Output 1. X output 6
2. Y output 2
3. Z output 4

*Notes: 1. Parameters are input/output via the DR registers.

2. Parameters are input/output in the order shown above. The
number of cycles is the period until the next parameter can
be selected or the results of the calculation can be read.

Example: [Coordinate calculation for three-dimensional rotation of an
object]

This command calculates the coordinates of an object after
three-dimensional rotation. (Refer to the diagram on the fol-
lowing page.)

3-5-10

SNES DEVELOPMENT MANUAL

Rotationon Y
axis

Y

Rotation on X
axis

Position of the object
before rotation X

Y

Rotation on Z
axis

Figure 3-5-6 Examples of Three-Dimensional Rotation

3-5-11

DESCRIPTION OF DSP1 COMMANDS

5.4 PROJECTION CALCULATION

5.4.1

PROJECTION PARAMETER SETTING

Name: Parameter
Code: 02H
Parameters: Input: F,[Cl]

F,ICl]
F,[ClI]
LielV]

LeslV]

AaslA]

AgzslAl

Output: Voill]

Vyall]
cJci]

C,[Cl]

X coordinate of base point (glo-
bal coordinates)

Y coordinate of base point (glo-
bal coordinates)

Z coordinate of base point (glo-
bal coordinates)

Distance between base point
and viewpoint (Sets screen-
sprite ratio.)

Distance between viewpoint and
screen (The effect of screen an-
gle considered; the screen hori-
zontal distance is 256)

Azimuth angle of view line with
respect to global coordinates.
(East is 0° and positive toward
the north)

Zenith angle of view line with re-
spect to global coordinates. (Ze-
nith is 0°, 0°~180°).

Raster number of imaginary
center

Raster number representing
horizontal line.

X coordinate of the point pro-
jected on the center of the
screen (ground coordinates)
Y coordinate of the point pro-
jected on the center of the
screen (ground coordinates)

Function: This command sets various projection parameters and
calculates the basic data used in subsequent process-
es. The command places the viewer behind a fixed point
such as an airplane. If the distance between the fixed
point and the view point is set to 0, then the viewer sees
the display from the perspective of the airplane.

3-5-12

SNES DEVELOPMENT MANUAL

Zenith Angle

Viewpoint
E

e = X (East)

Azimuth Angle

as

Assignment of Pi'ojection Parameter
Figure 3-5-7 Assignment of Projection Parameter

Vya (number of the raster used to display a horizontal
line) indicates the border between background environ-
ments such as sky or cloud and a horizontal plane such
as earth or sea. For raster numbers larger than V,, (rep-
resenting the area below the horizon line), a horizontal
plane is displayed on the screen, but the matrix ele-
ments for each raster are calculated individually using
the RASTER command.

Base Point
Viewpoint (Aircraft)

Relation between sight and projected plane (side view)

Figure 3-5-8 Relationship of Sight and Projected Plane

3-5-13

DESCRIPTION OF DSP1 COMMANDS

Cx and Cy (global coordinates for the point projected on
the center of the screen) are the center coordinates
used for rotation, and must be specified to the PPU.

Number of Process Cycles: Input . Command Input 6
. Fy input 11
. Fy input
. F,input
. Lte input
. Leg input
. A,s input
. A, input

- Vot
- Vya

X
y

Example: [Parameter setting necessary for projection]
Pilot Wings displays the view seen from the view point direct-
ly behind an airplane which is at the fixed point. When the
distance between the screen and view point is set to 256
(when the horizontal width of the screen is 256), the horizon-
tal screen angle is 50°.

W
©o

Output

o

GQON-=N 0O~ WWNN

.C

3-5-14

SNES DEVELOPMENT MANUAL

5.4.2

RASTER DATA CALCULATION

Name:
Code:

Parameters:

Function:

Raster

OAH (To output result of calculation via DMA.)
1AH (When result of calculation is not output via DMA.)

Input: VAl Raster number where projection
display begins.
Output: A, 18] Linear transformation matrix el-
ement A for each raster
Bn[18] Linear transformation matrix el-
ement B for each raster
C,lI8] Linear transformation matrix el-
ement C for each raster
D, (18] Linear transformation matrix el-

ement D for each raster

This command calculates the linear transformation ma-
trix elements (A, B, C, D) for each raster based on the
various projection parameters specified with the Param-
eter command in internal RAM. Effects of Perspective
can be achieved by specifying the matrix elements for
each raster to the PPU to display distant objects (small)
and near objects (large). Results of these calculations
can be output in one of two modes. Normally, the results
are read from the Super NES CPU using software. The
results are output successively in the order of A=B=—
C=D=,A=B * ¢ * until the command is completed. The
command is ended by writing 8000H to the DR instead
of reading element D.

3-5-15

DESCRIPTION OF DSP1 COMMANDS

Viewpoint

Screen Center

Projected position on the ground

Figure 3-5-9 Calculation of Raster Data

-
.
»
-
»
]
s
et

X

Figure 3-5-10 BG Screen and Displayed Area

Number of Process Cycles: Input 1. Command Input 6
2. Vg input 211
Output 1. A, 3
2.B, 3
3.C, 3
4.D, 200
5.D 72

>

*Notes: 1. Until A, is output.

2. Until the command is interrupted and the next command can
be selected.

3-5-16

SNES DEVELOPMENT MANUAL

=

Example: [Calculation of linear transformation matrix elements for pro-
jection]

This command is used frequently for projection of the ground
objects (airplane runway, sky diving target point, etc.) in Pilot
Wings.

3-5-17

DESCRIPTION OF DSP1 COMMANDS

|
5.4.3 OBJECT PROJECTION CALCULATION
Name: Project
Code: 06H
Parameters: Input: x[1] X coordinate of the object (glo-
bal coordinates)

y[i] Y coordinate of the object (glo-
bal coordinates)

Z[l] Z coordinate of the object (glo-
bal coordinates)

Output: H[I] H coordinate of the object pro-
jected on the screen (screen co-
ordinates, right is positive).

VI[I] V coordinate of the object pro-
jected on the screen (screen co-
ordinates, down is positive).

MII] Enlargement ratio for projected
object.

Function: This command calculates the location and size of the

projection of an object on the screen based on various
projection parameters specified with the Parameter
command in internal RAM. The center of the screen is
the origin of the screen coordinates (0,0).

Z (Sky)

Viewpoint

Object (x, y, 2)

0 -
X (East)

-Y (South)
Figure 3-5-11 Calculation of Projected Position of Object

3-5-18

SNES DEVELOPMENT MANUAL

,_.j
Number of Process Cycles: Input 1. Command Input 6
2. x input 12
3.y input 4
4. z input 596
Output 1. H output 3
2.V output 2
3. M output 41

*Notes: 1.

Example:

Z (Sky) A

—Y (South)

Until the next command can be selected.

[Calculation of the projected location (on the screen) of a
floating object]

This command is used in Pilot Wings to project a ring consist-
ing of floating balls. The location and size of the balls project-
ed on the screen are calculated based on the balls’ global
coordinates. By changing the location and size of the balls’
sprite, three-dimensional display of the ring projected on the
screen can be achieved.

Viewpoint
Figure 3-5-12 Projection Image of Object

3-5-19

DESCRIPTION OF DSP1 COMMANDS

o ; v B
5.4.4 COORDINATE CALCULATION OF A SELECTED POINT ON THE

SCREEN

Name: Target

Code: OEH

Parameters: Input: h[1] H coordinate of selected point
on the screen (screen coordi-
nates, right is positive)

v[l] V coordinate of selected point
on the screen (screen coordi-
nates, down is positive)

Note: The origin coordinates of the screen designate the
center of the screen.
Output: X{[1] X coordinate of selected point
(global coordinates, east is posi-
tive).

Y[l Y coordinate of selected point
(global coordinates, south is
positive).

Function: This command calculates the coordinates of a selected

“ground” point on the screen. The command calculates
the global coordinates (X,Y) (the Z coordinate is zero) of
the point projected on a point selected by a cursor or tar-
get mark based on the screen coordinates (H,V) of the
selected point.

Vi .
Z (Sky) iewpoint

creen Lenter

Figure 3-5-13 Calculation of Coordinates for the Indicated Point on the Screen

3-5-20

SNES DEVELOPMENT MANUAL

Number of Process Cycles: Input 1. Command Input 6
2. hinput 11

3. vinput 203
Output 1. X output 4

2. Y output 4"

*Notes: 1. Until the next command can be selected.

Example: [Calculation of the target on the ground when attacking from
the sky]

This command is used in Pilot Wings when the helicopter at-
tacks a target on the ground using a missile scope. When the
missile launch button is pressed, the location of the point on
the ground which is targeted in the scope is calculated and a
missile is launched on that vector. The trajectory of the mis-
sile is a straight line toward that point and is not affected by
the velocity of the helicopter at the time of the launch.

Viewpoint

Fixed Point

.
Path o;\

Missile

Figure 3-5-14 Attack Point and Position Indicated on Screen (Side View)

3-5-21

DESCRIPTION OF DSP1 COMMANDS

.

5.5 ATTITUDE CONTROL

5.5.1 SET ATTITUDE

Name:
Code:

Parameters:

Function:

Equation 5-9:

Attitude

01H (To select attitude matrix A)
11H (To select attitude matrix B)
21H (To select attitude matrix C)

Input: m[T] Constant
0[A] Rotational angle about the Z
axis (from Y axis to X axis is +)
¢[A] Rotational angle about the X
axis (from Z axis to Y axis is +)
o[A] Rotational angle about the Y

axis (from X axis to Z axis is +)

This command calculates a matrix which represents a
three-dimensional rotation (attitude change). The order
of rotation is ¢ about the Y axis (north-south), ¢ about
the X axis (east-west), and 6 about the Z axis (up-
down). By applying the attitude matrix to the object coor-
dinates (FLU coordinates), the global coordinates (XYZ
coordinates) can be obtained (the SUBJECTIVE com-
mand). By applying the inverse of the attitude matrix
(transpose matrix) to the global coordinates, the object
coordinates can be calculated (the OBJECTIVE com-
mand).

Calculates attitude matrix A when the code is 01H
(M=A)
Calculates attitude matrix B when the code is 11H
(M=B)
Calculates attitude matrix C when the code is 21H
(M=C)

cosg 0 —sinp||{1 O 0 cosO sin6 0
m 0 1 0 |[|0cosod sing||-sind cosd o] =M
sing 0 cos@||0 -sing coso|| O 0 1

3-5-22

SNES DEVELOPMENT MANUAL

Z (Sky) U (Up)
Direction of
Rotation
Y (North) L (Left)
X (East) F (Forward)
Global Coordinates Object Coordinates Before Rotation
(X, Y, Z Axes) (F, L, U Axes)
Figure 3-5-15 Attitude Computation
i oAy
|
1
L
|
Y P Y
X ¥
Rotation on Y Axis Object Coordinates After Rotation
(F, L, U Axes)
Figure 3-5-16 Object Coordinate Rotated on Y Axis
z
Y
X
Rotation on X Axis Object Coordinates After Rotation

(F, L, U Axes)

Figure 3-5-17 Object Coordinate Rotated on X Axis

Y
X

Rotation on Z Axis Object Coordinates After Rotation
(F, L, U Axes)

Figure 3-5-18 Object Coordinate Rotated on Z Axis

3-5-23

DESCRIPTION OF DSP1 COMMANDS

Number of Process Cycles: Input 1. Command Input 6
2. m input 13
3. 6 input 4
4. ¢input 4
5. ¢ input 13771
*Notes: 1. Until the next command can be selected.

Example:

[Calculation of attitude matrix for global-object coordinate
conversion)

This command is used to calculate necessary attitude matri-
ces using 3 commands for attitude control. When the attitude

changes, this command must be used to renew attitude con-
trol matrices.

3-5-24

SNES DEVELOPMENT MANUAL

B

—
5.5.2 CONVERT FROM GLOBAL TO OBJECT COORDINATES
Name: Objective
Code: ODH (To select attitude matrix A)
1DH (To select attitude matrix B)
2DH (To select attitude matrix C)
Parameters: Input: x[1] X coordinate of object (global
coordinates, east)
y[i] Y coordinate of object (global
coordinates, north)
Z[l] Z coordinate of object (global
coordinates, up)
Output: F[21] F coordinate of object (object
coordinates, forward)
L2 L coordinate of object (object
coordinates, left)
U[21} U coordinate of object (object
coordinates, up)
Function: Attitude matrices (A,B,C) represent the three-dimen-

Equation 5-10:

sional relationship between rotation angles of the object .
coordinates (the FLU axes) and global axes (the XYZ
axes). The global coordinates are obtained by multiply-
ing the object coordinates with attitude matrices (i.e., by
rotating three-dimensionally). Inversely, the object coor-
dinates are obtained by multiplying the global coordi-
nates with inverse of the attitude matrices (i.e., by
rotating in the opposite direction and order).

Calculates the product with inverse of the matrix A when
the code is ODH (M 1=A"").

Calculates the product with inverse of the matrix B when
the code is 1DH (M'=B™").

Calculates the product with inverse of the matrix C when
the code is 2DH (M '=C").

Sy, DM = (F,LU)

3-5-25

DESCRIPTION OF DSP1 COMMANDS

s
U (Up)
| S,
Y (North)
Z (Sky) [N
P ’ru—pl' z:7yl
Z\[):’\ /,{\A’Z . ,‘I
SRS L e (Left)

F (Front) \‘xj,"
’ X

X (East)
Figure 3-5-19 Conversion of Global to Objective Coordinates

Number of Process Cycles: Input 1. Command Input 6
2. x input 14

3.y input 4

4. z input 7

Output 1. F output 5

2. L output 5

3. U output 4

*Notes: 1. Parameters are input/output via the DR registers.

2. Parameters are input/output in the order shown above. The
number of cycles is the period until the next parameter can
be selected or the results of the calculation can be read.

Example: [Conversion from the global coordinates to object coordi-
nates]

In Pilot Wings, the conversion of objective coordinates to glo-
bal coordinates for the aircraft is calculated using wind ef-
fects. Using these calculations, the course and speed of the
aircraft may be altered by wind direction and speed.

3-5-26

SNES DEVELOPMENT MANUAL

5.5.3

CONVERSION FROM OBJECT TO GLOBAL COORDINATES

Name:
Code:

Parameters:

Function:

Equation 5-11:

Subjective

03H (To select attitude matrix A)
13H (To select attitude matrix B)
23H (To select attitude matrix C)

Input: F[21] F coordinate of object (object
coordinates, forward)
L[21] L coordinate of object (object
coordinates, left)
U[21] U coordinate of object (object
coordinates, up)
Output: X[1] X coordinate of object (global
coordinates, east)
Y[1] Y coordinate of object (global
coordinates, north)
Z[1] Z coordinate of object (global

coordinates, up)

Attitude matrices (A,B,C) represent the three-dimen-
sional relationship between rotation angles of the object
coordinates (FLU axes) and global axes (XYZ axes).
The global coordinates are obtained by multiplying the
object coordinates with attitude matrices (i.e., by rotating
three-dimensionally).

Calculates product with attitude matrix A when the code
is O03H (M=A)
Calculates product with attitude matrix B when the code
is 13H (M=B)
Calculates product with attitude matrix C when the code
is 23H (M=C)

%(F,L,U)M = (X.Y,2)

3-5-27

DESCRIPTION OF DSP1 COMMANDS

Z (Sky)
A
U (Up-side) RAFIRN
4 PN PAR T
i ' e
N . 7}‘/;/
uw\ s L !
AN e > !
[fe . P i
;' ,'*‘ - II
B el Y (North)

.
.
. ! ‘

X (East) .-

¢

’F (Front)

Figure 3-5-20 Conversion of Object to Global Coordinates

Number of Process Cycles: Input 1. Command Input 6
2. F input 13

3. L input 4

4. U input 7

Output 1. X output 5

2.Y output 5

3. Z output 4

*Notes: 1.

Parameters are input/output via the DR registers.

2. Parameters are input/output in the order shown above. The

Example:

number of cycles is the period until the next parameter can
be selected or the results of the calculation can be read.

[Calculation of the global coordinates after change in the ob-
ject’s attitude]

In Pilot Wings, the object coordinates of the ring of balls re-
main the same unless the size of the balls or the shape or
size of the ring is changed because there is one object coor-
dinate system dedicated for the ring. When the direction (atti-
tude) of the ring is changed, the ATTITUDE command is
used to renew the attitude matrices. The ring with the new at-
titude can be displayed by calculating the global coordinates
using the new attitude matrices and calculating the location of
balls’ projection using the PROJECT command. The same
process takes place when the object coordinates change
without a change in attitude or when both attitude and object
coordinates change.

3-5-28

SNES DEVELOPMENT MANUAL
5.5.4 CALCULATION OF INNER PRODUCT WITH FORWARD ATTITIDE
AND A VECTOR
Name: Scalar

Code: OBH (To select attitude matrix A)
1BH (To select attitude matrix B)
2BH (To select attitude matrix C)

Parameters: Input: x[1] X component of vector.
y[i] Y component of vector.
Z[l] Z component of vector.
Output: S[l] Inner product
Function: This command selects an attitude matrix based on the

code. It calculates the inner product of a vector and the
first row of the selected matrix.

When the code is 0BH, S =x ¢ A, +y * Ay + 22 Ay,
When the code is 1BH,S=x-Bf,(+y-ny+z-BfZ
When the code is 2BH, S =x ¢ Cy, +y * C + 2+ Cy,

Normal Vector
of Plane

Figure 3-5-21 Calculation of Inner Product with Forward Attitude

Note: As shown below, the first row of the attitude matrix
represents global coordinates of a unity vector (1,0,0) in
the forward direction in the object coordinate system.

Equation 5-12:
fo Mfy Mfz
S = (XY,2) (1,0,0)|M, M M,| = (MM M)
Mux Muy Muz

Mis equal to A, B, or C; depending upon selected code.

3-5-29

DESCRIPTION OF DSP1 COMMANDS

Number of Process Cycles: Input 1. Command Input 6
2. x input 15

3.y input 4

4. z input 7

Output 1. S output 4

*Notes: 1. Parameters are input/output via the DR registers.

2. Parameters are input/output in the order shown above. The
number of cycles is the period until the next parameter can
be selected or the results of the calculation can be read.

Example: [Detection of three-dimensional collision]

This command is used in Pilot Wings to see if the airplane
flew through the ring of balls. The sign of the inner product of
the forward vector of an object and the vector connecting the
object and the airplane changes when the airplane crosses
the plane containing the ring (the inner product is zero when
the airplane is on the plane). When the sign change occurs,
the distance from the center of the ring to the airplane and
the radius of the ring can be compared with the RANGE com-
mand to see if the airplane was able to fly through the ring.

Vector passes through

the plane and ring. /Q
— — |
a < b =0 .
Vector passes through : —
the inside of ring. A a

o | <r

a * b <0

Figure 3-5-22 Position of Aircraft and Vector Code

3-5-30

SNES DEVELOPMENT MANUAL

5.6 NEW ANGLE CALCULATION

5.6.1 THREE-DIMENSIONAL ANGLE ROTATION
Name: Gyrate
Code: 14H

Parameters: Input: 6,[A] Angle of rotation about the Z
axis (+ from the Y axis to the X
axis)

¢ [A] Angle of rotation about the X
axis (+ from the Z axis to the Y
axis)

o;i[A] Angle of rotation about the Y
axis (+ from the X axis to the Z
axis)

aB[A] U axis displacement angle. (+
from the L axis to the F axis)

do[A] F axis displacement angle. (+
from the U axis to the L axis)

do[A] L axis displacement angle. (+
from the F axis to the U axis)

Output: 0,[A] Rotational angle about the Z
axis.

¢ [A] Rotational angle about the X
axis.

®olA] Rotational angle about the Y
axis.

Note: F, L, U axes represent the X, Y, Z axes when ro-
tated ¢;, ¢;, 6; only.

Function: This command determines the attitude angles (6, ¢,
¢o) of the body coordinates after the body with the atti-
tude angle (8;, ¢;, ¢;) with respect to the global coordi-
nates are rotated by the minor displacement (a9, d¢,
de). The body axes are rotated about the XYZ axes by
(8;, 9;, @;) to obtain the FLU axes. The FLU axes are
then rotated by (a9, d¢, do). This command calculates
the angles of the new FLU axes with respect to the XYZ
axes. The order of rotation is Y axis, X axis, and Z axis
(L, F, and U axis).

Equation 5-13:

6; + seco, (dBcosg, - dosing,) = 6,
0;+ (dBsing; + ddcosy,) = ¢,
9, - tan¢, (d6cosg, + dosing,) +do = ¢

3-5-31

DESCRIPTION OF DSP1 COMMANDS

u
Rotate 6, ¢;, ¢, F
to X, Y, Z Axis
y4 L
A
Objective Coordinates
(F, L, U Axes)
Rotate a8, do,
Y do to F, L,U Axis

Global Coordinates \
(X, Y, Z Axes)
Rotate 6,, ¢, ¢,
to X, Y, Z Axis

Objective Coordinate Result of
Attitude Change
(F’, L', U’ Axes)

Figure 3-5-23 Calculation of Rotation Angle After Attitude Change

3-5-32

SNES DEVELOPMENT MANUAL

e

Number of Process Cycles: Input

*Notes: 1.

1. Command Input 6
2. 6; input 14
3. ¢; input 2
4. @; input 2
5. d6 input 2
6. d¢ input 2
7. do input 406
Output 1. 6, output 2
2. ¢, output 4
3. ¢, output 4

Parameters are input/output via the DR registers.

2. Parameters are input/output in the order shown above. The

Example:

number of cycles is the period until the next parameter can
be selected or the results of the calculation can be read.

[Calculation for object attitude (directions) change]

This command is used to calculate the attitude angles of an
object that is steadily moving. The command determines the
attitude angles with respect to the global coordinates by
specifying the angles of change to the current attitude angles.
The command may be used continuously to determine
changing attitude angles.

3-5-33

MATH FUNCTIONS AND EQUASIONS

Chapter 6 Math Functions and Equations

The following is a summary of the mathematical functions and equations used in this
manual.

6.1 MULTIPLY

kxl =M
6.2 INVERSE
L _ Ax28
ax?2
6.3 TRIANGLE
r(cos6) = C
r(sing) = S
6.4 RADIUS
xX2+y2+22 = L
6.5 RANGE

x2+y2+22-r2=D
6.6 DISTANCE
Wx2+y2:22 =R

6.7 GYRATE

0, + sec¢; (dOcosg, - dosing,) = 6,

¢;+ (dOsing, +docosg,) = ¢,

¢, - tan¢, (d6cosg, + dosing,) +do = ¢,
6.8 ROTATE

(X, Y) [c<.>s¢ —sinﬂ = (X.Y)
sing cosd

3-6-1

SNES DEVELOPMENT MANUAL

=

6.9 POLAR

(%¥:.2)| 0 1 0 [|0cos¢-sino||sing cose of = (X,Y,Z)

cosg 0 sing||l O 0 ||cosB -sin6 0
-sing 0 cos@| |0 sing cosd|| O 0 1

6.10 ATTITUDE

cos¢ 0 —-sing|{1 O 0 cos6 sin6 0
m 0 1 0 |[|0cosd sing||-sin® cose o =M
sing 0 cos@||0 —sind cosd|| O 0 1

6.11 OBJECTIVE

%(x, y,Z)M-1 = (F,L,U)

6.12 SUBJECTIVE
%(f, LM = (X,Y,2)

6.13 SCALAR

fo Mfy Mfz
§=(XY,2)(1,0,0) M, M, M,| = (MM M)
IVlux Muy Muz

3-6-2

INTRODUCTION

5 it
Chapter 1. The Super NES Super Scope System
1.1 INTRODUCTION TO THE SUPER NES SUPER SCOPE SYSTEM

The Super NES Super Scope is a light sensitive system for use with the Super
NES. The Super NES Super Scope was developed to give the Super NES added
value and eliminate all of the problems of heretofore existing devices. Features of
the Super NES Super Scope are as follows. It is composed of two units; the Super
NES Super Scope (light sensitive device) and a receiver/transmitter (Super NES
Super Scope-RX).

1.1.1 TARGETING
The Super NES Super Scope detects where the device is aimed, unlike
the existing Nintendo Entertainment System device (Zapper), which de-

tects targets. The wireless system utilizes an infra-red beam.

Super NES Super Scope-RX

(Receiver)
Figure 4-1-1

Signal Flow

CRT Light | Power
Visual light receiver Source
SNES ‘
<
* CPU |4
]
|
CPU l Trigger
: =
Light ight
rec%iver % Infra-red Emitter
beam

Super NES Super Scope

The Super NES Super Scope utilizes the external latch function of the
Super NES horizontal/vertical counters. The Super NES Super Scope de-
tects CRT scanner timing with a light receiver, and transmits the timing
pulse to the Super NES external latch pin to detect the aim location on
the CRT. (Same principle as a light pen.)
When the Super NES Super Scope is triggered, the Super NES Super
Scope sends a beam of infra-red light to the Super NES and transmits
raster timing pulses for a few frames.
When the CPU in the Super NES Super Scope RX recognizes the trigger
signal, it opens the gate for an appropriate duration to provide the Super
NES with the timing pulses.

4-1-1

SNES DEVELOPMENT MANUAL

1.1.2

SUPER NES SUPER SCOPE SIGHT ADJUSTMENT

The most precise alignment of the Super NES Super Scope’s sight oc-
curs when the end of its barrel is 3 meters (about 10 feet) away from the
television screen. Please refer to the illustration below.

Line of sight @

CRT

I
—_
«— ; A\
Optical Axis ' 4 °m ! |
1m !

Visual Axis

Figure 4-1-2 Optical Alignment

The line of sight (visual axis) virtually “sees” what the lens (optical axis)
“sees” when the distance between the television screen and the end of
the Super NES Super Scope barrel is 3 meters (10 feet). As demonstrat-
ed above, an offset occurs as this range is moved away from 3 meters, in
either direction. The function of the “ADJUST AIM” and “TEST AIM” por-
tion of the game is to adjust the optical axis for proper sight alignment
through software at the beginning of the game. This adjustment takes into
account all electrical delay times. When the adjustment is performed, an
insensitive area is created at the edge of the screen. The greater the off-
set adjustment, the larger this insensitive area becomes.

The following illustration demonstrates an example of the difference be-
tween what your eye might see through the Super NES Super Scope and
what the lens sees, during the Adjust Aim mode.

ADJUST AIM

@® What your eye sees (visual axis)

X What the lens sees (optical axis)

I:I Television screen

D Virtual screen (coordinate)

Figure 4-1-3 Virtual Screen Alignment

412

INTRODUCTION

s

1.2

In order for proper alignment to occur, the virtual screen must be moved
in the direction of the arrow. As the virtual screen is moved up and to the
left an insensitive (shaded) area is created at the edges of the screen.
This shaded area cannot be processed. For this reason, the Super NES
Super Scope operation manual recommends that the Super NES Super
Scope be used at a range of 3 meters (about 10 feet) from the television
for optimum performance. At this distance the insensitive area at the
edge of the screen is, for all practical purposes, eliminated.

BASIC SUPER NES SUPER SCOPE SPECIFICATIONS

Range: 3.28 ~ 16.4ft (with fully charged batteries)
Resolution: About 1 character (8 dots, in x and y orientation)
Lens: f=150 mm, 30 ¢

Batteries: Six size AA batteries

Controls:

¢ Power switch

* Single shot/multiple shot selection switch (This is a three-position switch, -
which is also used as the power switch.)

* Pause switch (See Note 1)
* Cursor switch (See Note 2)

* Trigger switch

Note 1: This function varies depending on the software, and is used to
pause during a game or change screens.

Note 2: The cursor is displayed on the screen while this switch is held
down. (The location signal is transmitted continuously.)

4-1-3

SNES DEVELOPMENT MANUAL

oo

1.3 SUPER NES PROGRAM ADDRESS

1.3.1 REGISTER BIT ASSIGNMENT
The connector for #2 controller serves as the interface between the Su-
per NES Super Scope-RX and the Super NES. Like a standard controller,
the Super NES controller can read signals automatically. Address and bit
assignments are indicated in the following figures..

D7 DO
1
421A (H) 1 1 1 1 1 ! ! Controller
#2
MULTIPLH
421B (H) | TRIGGER| CURSOR | ¢t P/S 0 0 | NULL |NOISE

421A (H) is always FF (H). D7, 6, 5 and 4 of 421 A(H) are unspecified bits.
D3,2, 1, and 0 of 421A (H) and D2 and 3 of 421B (H) are Super NES Super
Scope ID codes.

213C(H) | Horizontal counter latch

213D (H) Vertical counter latch

The horizontal/vertical counter is a hard counter whose latch trigger is set by
the Super NES Super Scope.

213F (H) EXT

D6 of 213F (H) is the external latch flag.
Figure 4-1-4 Address and Bit Assignments

4-1-4

INTRODUCTION

|

ITEM ACTIVITY EXPLANATION
LEVEL

Trigger High Indicates that the trigger has been pulled.
Cursor High Indicates cursor mode.
Single/multiple High Indicates single or multiple shot mode.
Pause High Indicates that the pause button is pressed.
Noise High Indicates that noise disturbance is impairing operations.
Null High Indicates that a valid raster signal could not be found.
H counter - The H-position of the hit
V counter - The V-position of the hit
EXT latch High Indicates that the data was set to the HV counter.

The external latch only can be reset by read. (It cannot be reset by the write command.)
Table 4-1-1 Signal Bit Definitions

4-1-5

SNES DEVELOPMENT MANUAL

Chapter 2. Principles of the Super NES Super Scope

2.1

PRINCIPLES OF THE SUPER NES SUPER SCOPE

A comprehensive explanation of the Super NES Super Scope’s operation would
involve a wide spectrum of topics and require more space than is allowable here.
The following is a basic, if cursory, description.

The Super NES projects 60 pictures per second on the television screen. That is,
every 1/60 second, a picture frame is projected on the television. But before ex-
plaining how the picture is drawn, it is necessary to describe the Braun tube or
CRT in the television set.

A florescent material (phosphor coating) is fused to the inside of the Braun tube’s
glass screen. Light is emitted when electrons bombard this florescent material.

The inside of the Braun tube resembles a funnel (refer to the figure below) and an
“electron gun” is located at the rear of the tube. (This is the section which extends
from the back of a television.)

Electron Gun

Deflection Coils

Florescent Material
(Phosphor Coating)

Figure 4-2-1 Picture Tube

4-2-1

PRINCIPLES OF THE SUPER SCOPE

2]

The electron gun discharges a beam of electrons toward the screen. This, by it-
self, would only light a fixed spot where the electron beam hit the screen; howev-
er, deflecting coils are attached to the base of the tube and a signal is transmitted
to the coils to drive the electron beam in the direction desired.

VVVVVVVV$¢

Figure 4-2-2 Scanning

Using this technique, the electron beam scans from left to right beginning at the
top left of the screen and moving successively down the screen, as shown in the
above figure. Each horizontal line formed by the scan is called a scan line or a
raster. Light and dark areas are created by varying the intensity of the electron
beam as it scans across the florescent material. This is how each picture is drawn.

The Super NES contains a PPU (picture processing unit), for controlling the pic-
ture projected on the screen. Inside the PPU is a “raster counter” (or “HV counter”)
with a register which holds the X and Y coordinates of the electron beam in the
Braun tube as it scans.

When the Super NES Super Scope is aimed at the screen, a small area on the
screen is seen by the Super NES Super Scope.

------------------------ —
----------------------- s
------- e — - — - — - - === -
------ D R ekl
______ T e
______ A-——J-——————————=——
ittt

Figure 4-2-3 Area Seen by Super NES Super Scope

4-2-2

SNES DEVELOPMENT MANUAL

2.2

As shown in the previous figure, the instant the electron beam scans across the
area seen by the Super NES Super Scope, it sends a signal to the Super NES.
The Super NES registers the value of the PPU raster counter using this timing sig-
nal. With this data, the Super NES can detect the point on the screen where the
Super NES Super Scope is aimed.

SUPER NES SUPER SCOPE PROGRAMMING

We assume that most readers are involved in programming Super NES Super
1 Frame

Scope games..
Figure 4-2-4 Vertical Positioning

The above figure depicts the output of the Super NES Super Scope’s light recep-
tion amplifier under these conditions. Each of the pulses represents a raster in the
Braun tube. The Super NES Super Scope system picks a pulse and transmits it to
the Super NES raster counter. Pulse selection determines the vertical location on
the screen by the raster count. This is done under a fixed set of conditions by the
Super NES Super Scope’s internal CPU.

The horizontal position is determined by the timing of pulses with respect to the
Super NES Control Deck’s horizontal synchronization signal. (Refer to the figure
below.)

Raster |
Pulse !
|

Horizontal
Sync Signal

16.6 ms
HMS

63.5 s

Figure 4-2-5 Horizontal Positioning

4-2.3

PRINCIPLES OF THE SUPER SCOPE

|

2.3

The time corresponding to one dot on the screen is an amazing 180 nsec. This
processing speed cannot be achieved by most micro-computers, and in the Super
NES Super Scope system, the raster pulse is not processed directly by the CPU.
Signal transmission and selection is done by opening and closing the raster gate,
controlled by the CPU, and is depicted in the block diagram in Chapter 1. An area
of caution for Super NES Super Scope programs is that Super NES Super Scope
operations are not synchronized with the Super NES. The timing relationship be-
tween the Super NES Super Scope, the Super NES screen scan, and the pro-
gram, described later, should be kept in mind when programming.

THE SUPER NES HORIZONTAL/VERTICAL COUNTER

The horizontal/vertical counter of the Super NES plays a critical role in the Super
NES Super Scope system, yet is not described in much detail in the Super NES
programming manual or other documents. For this reason, we will present an
overview here.

Vertical Sync Signal

Horizontal Sync Signal l
YCLR . CLR
Video Clock Horizontal | “arry Vertical
——— ™| Counter [Counter
Horizontal Vertical
Latch Latch

! !

External Latch Pins
Figure 4-2-6 Horizontal/Vertical Counter
The horizontal counter value corresponds to the horizontal location of the raster
and the vertical counter value corresponds to the vertical location of the raster.

These values can be stored by sending a pulse to the external latch pin. The Su-
per NES software then reads this, and is able to detect the location on the screen
which corresponds to the external latch pulse.

In the Super NES Control Deck, a flag is set when the horizontal/vertical latch is
set. This flag does not operate in synchronization with the programming flow, and
interrupts are not supported by the Super NES Control Deck. Hence, program-
ming precautions should be taken.

424

SNES DEVELOPMENT MANUAL

e =

Chapter 3. Super NES Super Scope Functional Operation

3.1 SUPER NES SUPER SCOPE CPU

The Super NES Super Scope CPU is a one-chip CPU for processing Super NES
Super Scope key input (trigger, cursor, etc.), data pulse generation, and transmis-
sion of screen timing signals.

3.1.1 KEYS
Trigger Trigger
Cursor Continuous input
Pause One-shot input

Multiple/single shot ~ Switches between continuous trigger in-
put and one-shot input

3.1.2 KEY PRIORITY
Priority is given in the order of the trigger, cursor and pause keys. Two
types of trigger codes are generated by switching between the multiple
and single shot modes.

3.1.3 KEY RECOGNITION
A key is recognized as “on” after it is on for 1 msec or more, and “off” after
20 msec or more.

3.1.4 SIMULTANEOUS KEY INPUT
Only the trigger and cursor keys can be input at the same time. Other key
combinations are not recognized.

3.2 SUPER NES SUPER SCOPE BLOCK DIAGRAM

A Infra-red filter

""H""' Light Receiver/ | _
Amplifier

Raster Gate

|Switch|
To: Super NES Su em Infra-red
° P Transmitter|

Scope receiver

Infra-red beam

Figure 4-3-1 Super NES Super Scope Block Diagram

4-3-1

FUNCTIONAL OPERATION

3.2.1 LIGHT RECEIVER/AMPLIFIER
The light receiver/amplifier receives the light signal from the CRT, con-
verts it to pulses, and transmits the pulses to the Super NES Super
Scope CPU. It consists of a pin photo-diode H-amp, and an M-amp for
signal amplification and pulse conversion.

3.2.2 SUPER NES SUPER SCOPE CPU (SM595)
The Super NES Super Scope CPU reads the Super NES Super Scope,
generates the corresponding code, controls the raster gate, and sends
the raster signal to the Super NES Super Scope receiver.

3.2.3 LIGHT OUTPUT
This converts the pulse generated by the CPU into an infra-red beam. It
consists of an infra-red LED and its driver.

3.3 SUPER NES SUPER SCOPE FLOW DIAGRAM

-------- Transmit Code

'

Open Raster Gate

Figure 4-3-2 Super NES Super Scope Flow Diagram
The Super NES Super Scope does not process the raster signal.

432

SNES DEVELOPMENT MANUAL

3.4 INFRA-RED DATA TRANSMISSION FORMAT

3.4.1 Overview
The Super NES Super Scope infra-red signal is composed of two seg-
ments. The first segment contains a digital code, which defines the sin-
gle-shot trigger, multiple-shot trigger, cursor, and pause. The second
segment is the raster segment. The Super NES Super Scope CPU opens
the raster gate and connects the light receiver/amplifier and light output.
The raster signal is output from the CRT for a set duration of time.

Raster Gate Open >

Code Segment Raster Segment

Figure 4-3-3 Raster Signal

3.4.2 DESCRIPTION OF ONE BYTE
The Super NES Super Scope system can generate four types of codes
based on the status of the keys. One byte is defined as follows.

a 1al |a. ua' 'a, .an 'a, .al
*H' ﬂ H H H H H H
E‘ 577 Us »E
: a=10Us b=71us :

Figure 4-3-4 Definition of one byte
One byte is composed of a block of eight pulses as shown above.

4-3-3

FUNCTIONAL OPERATION

I8
The code is generated by combining five one-byte blocks as shown be-
low.
¢y d 4 Cc ; c . d rood 1 Cc o
T P
1 2 3 4 5
c =577 Uus d=651us

Figure 4-3-5 Output Signal Code

Byte 1 is the switch byte.
Byte 5 is the end byte.
Bits 2, 3 and 4 are data bits

3.43 COMMUNICATION CODES
Four codes are defined as follows.

Cursor

Outputs while cursor is held down

Trigger
(multiple shots)

e

When the “multiple shots” switch is “on”, pulses are output
while the trigger is held depressed.

Trigger
(sir?gle shot)

n

When the “multiple shots” switch is “off”, one output pulse
occurs each time the trigger is depressed.

Pause

n

This output pulse occurs only when the pause key is
depressed.

Figure 4-3-6 Definitions of codes.

4-3-4

SNES DEVELOPMENT MANUAL

3.4.4 RASTER SIGNAL TRANSMISSION TIMING

a. Trigger (single shot)

~ Raster Output (85 % 20 1
4 (10ms) (5.5ms) aster Output (85 ms) ounce (20 ms)

Chattering (1 ms) Wait (0.6 ms)

b. Trigger (multiple shots)

>5Walt sCode Raster Output (85 /:< d R Ott
A (10ms(55 msh "% D UPY 85ms) " 0 ms)(55ms %y Qefeu

Chattering (1 ms) Wait (0.6 ms) Chattering (1 ms) Wait (0.6 ms)

Figure 4-3-7 Raster Signal Transmission Timing, part 1

The cycle above is repeated while the trigger is held down. When the trig-
ger is released, a single shot cycle occurs as the final cycle

4-3-5

FUNCTIONAL OPERATION

c. Cursor

Chattering (1 ms) Wait (0.6 ms) Chattering (1 ms) Wait (0.6 ms)

it

! Wait Code! ! "Wait Cod:
(10 msy5.5 mel. aster Output (85 ms) = 5 Tsx5 5 may\agky Qufput

d. Pause

Wait | o] egi< >
ait ¢ :
(10 ms) (5.5 ms) Bounce (20 ms)

Chattering (1 ms) Wait (0.6 ms)

Figure 4-3-7 Raster Signal Transmission Timing, part 2

The raster gate opens during raster output and the raster pulses are
transmitted to the Super NES Super Scope receiver. The raster pulse
timing is not defined. The Super NES Super Scope and Super NES Con-
trol Deck are not synchronous.

4-3-6

SNES DEVELOPMENT MANUAL

Chapter 4. Super NES Super Scope Receiver Functions

4.1 SUPER NES SUPER SCOPE RECEIVER BLOCK DIAGRAM

The Super NES Super Scope receiver first receives the infra-red signal from the
Super NES Super Scope, and transmits the key switches and screen timing sig-
nals to Super NES Control Deck.

From: Super NES

Super ScopeN\,k fra-red
eceiver

Amplifier

Infra-red beam

[Receiver-CPU

Y Raster Gate

| Shift Register |

Key Input External
Super NES
Control Deck Latch Input

Figure 4-4-1 Receiver Block Diagram

4.1.1 INFRA-RED LIGHT RECEIVER/AMPLIFIER
Receives the infra-red signal from the Super NES Super Scope, converts
it to pulses, and transmits the pulses to the Super NES Super Scope re-
ceiver CPU. It consists of a pin photo diode H-amp and an M-amp for sig-
nal amplification and pulse conversion.

4.1.2 SUPER NES SUPER SCOPE RECEIVER CPU
The CPU analyzes the code signal from the Super NES Super Scope,
controls the shift register flag and raster gate, and sends the raster puls-
es to the Super NES external latch pin.

4.1.3 SHIFT REGISTER
This is the interface between the Super NES Super Scope receiver CPU
and the Super NES Control Deck, and is similar to the type of interface
found in a controller.

4-4-1

RECEIVER FUNCTIONS

4.1.4 OPERATIONS FLOW DIAGRAM

Set Code Bit Send Key Information
Open Raster Gate Set Null

' '

Figure 4-4-2 Operation Flow Diagram

In addition, a pulse check is performed during code detection for noise
detection.

4-4-2

SNES DEVELOPMENT MANUAL

4.2 SUPER NES SUPER SCOPE RECEIVER INTERFACE

RASTER GATE

SNES CONTROLLER PORT #2

VDD

T

CUP1

P/S (OUT 0)

4017 DO

4017 D1
EXT LAT
GND

NIOJjO]A]|WIN]|=

SUPER NES SUPER
SCOPE RCVR-CPU

TRIGGER

D IN

P/S CLOCK

4021 Qs
P1 P2 P3 P4 P5 P6 P7 P8

CURSOR

SINGLE/MULTIPLE SHOT

PAUSE

NOISE

NULL

Figure 4-4-3

4-4-3

Receiver Interface Schematic

RECEIVER FUNCTIONS

S S |
4.3 CODE PULSE DETECTION
4.3.1 ONE BIT CODE DETECTION

Block
i) 3) (4) (5)

Figure 4-4-4 One Bit Code Detection

A block is good if five - 81 lisec pulses are detected in succession in any
of the ranges, A, B, C and D shown above.

A noise flag is set if the “high” level is detected 36-39 [sec after the ris-
ing edge of a pulse is detected.

4-4-4

SNES DEVELOPMENT MANUAL

4.3.2

Infrared
amplifier
output

]
Raster gate] petection start
p———p

Infrared
amplifier
output

Detection start

RASTER PULSE DETECTION

The start of detection and input of raster pulses do not coincide in the ex-
ample below.

: 63us:
b E—

1 2 3 4 5 6 7 8 9

28us

A 4

[}

Ig
P

Detection period

o 14ms NOP
I

The latch gate opens when pulses 1~6 are detected with the precise cy-
cle time.

In the next example, the start of detection and input of raster pulses coin-
cide.

I)
A 4

5ms NOP >

Two pulses immediately following the start

If two raster pulses are detected immediately following the start of raster
pulse detection, it is determined that the detection cycle occurred at the
same time as raster pulse input. In this case, the receiver CPU would per-
form time calculations for 5 msec. In this frame, the CPU does not at-
tempt to output the raster signal.

An error occurs when a raster exceeds 5 msec. (With the existing optical
system, this may happen 1.64 feet away from a 14-inch television
screen.)

4-4-5

RECEIVER FUNCTIONS

4.4 FUNCTIONAL DESCRIPTION
441 CURSOR MODE

Raster End cycle with the
signal trigger switch off
Code\ _ 4 - A ~
amplifier — + ;
output : : : '
L 1 102ms; K 102ms | 22ms ! |
4021P7 o o g
(CURSOL)1.1ms ! ! ! |
> [' : [
| ! / !
|
|
|
'
'
'

Raster

detection

cycle
i 80.8ms s 80.8ms :
! —p

Figure 4-4-5 Cursor Mode Raster Detection Cycle

In the cursor mode, the cursor is displayed continuously on the screen.
To accomplish this, raster pulses are transmitted for five frames (85
msec) after code data is sent from the Super NES Super Scope.

4-4-6

SNES DEVELOPMENT MANUAL

44.2 TRIGGER MODE (SINGLE SHOT)

(single/multiple)

Trigger code The next code is prohibited
H _ in this period
Infrared
amplifier o
output b
s
4021P8 (TRIG) |
.:
b |
! 81ms J
e)
[}
[}
'
4021P6 ;
|
f
|
,l

Raster
detection
cycle

0.2ms
_— e

Figure 4-4-6 Trigger Mode, Single Shot

4-4-7

RECEIVER FUNCTIONS

443 TRIGGER MODE (MULTIPLE SHOTS)

End cycle with the
trigger switch off

Code\
Infrared
amplifier
output

4021P8
(TRIG)

4021P6
(single/multiple)

Raster
detection
cycle

Figure 4-4-7 Trigger Mode, Multiple Shots
4.4.4 NOISE FLAG

36 - 39us! : ‘ ' 36-39us
» e » 1¢

: '

Infrared amplifier : j

output ' '
E 20ms :
4021P1 o

(NOISE)

Figure 4-4-8 Noise Flag

Under the timing shown above, the noise flag is set when a pulse with a
cycle time different from that used by the Super NES Super Scope sys-
tem is detected while waiting for the code.

4-4-8

SNES DEVELOPMENT MANUAL

445 NULLBIT
Super NES Super Scope Super NES Super Scope
is not aimed at the screen is aimed at the screen
Infrared
amplifier
output b 7!
Raster :
detection cycle
Raster ;
gate ;
:
[
)
I
4021P2 ' !
(NULL)
Figure 4-4-9 Null Bit
The nuli flag is set if a valid raster signal is not detected during a raster
detection cycle. It is reset if a valid raster signal is detected in a subse-
quent cycle and the raster gate is opened.
446 PAUSEBIT
6mpl|fler ,,,,, . 35 — U 30 ,
utput 35ms—>. }<¢>; 1.35ms —»~ ;<—m§—>:
—_— : -
4021P5 : |
(Pause) : |
' I

Figure 4-4-10 Pause Bit

This flag is set when a pause code is received from the Super NES Super
Scope.

4-49

RECEIVER FUNCTIONS

-

4.4.7 CURSOR + TRIGGER CYCLE
4.4.7.1 TRIGGER (SINGLE SHOT)

Raster Signal
Cursor Code
Infra-red

Amplifier
Output

4021P8
(Trig)

4021P6
Single/
ultiple)

4021P7
(Cursor)

0.2ms —>€ -

Raster Detection [| .
Cycle | 808ms i 1 _ 80.8ms_'
e e -

Figure 4-4-11 Trigger, Single Shot

4-4-10

SNES DEVELOPMENT MANUAL

[

4.4.7.2 TRIGGER (MULTIPLE SHOTS)

. Inserted i
Raster Signal ' Trigger i
r4—— Cycle —»

Cursor Code

Infra-red
Amplifier
Output

4021P8
(Trig)

4021P6
Single/
ultiple)

4021P7
(Cursor)

ter Detecti ; —
23;2’ clection | 80.8ms |

©
o
o
3
/2]

Figure 4-4-12 Trigger, Multiple Shots

Same as the cursor mode except the trigger flag and single/multi-
ple shot flags vary.

Note: In this section, the timing charts for each 4021Px flag (trig-
ger, cursor, single/multiple shot, etc.) are expressed in negative
logic (active low); however, these are positive logic (active high) in
the Super NES program.

4-4-11

5.1

GRAPHICS

Chapter 5. Graphics

LIMITATIONS ON GRAPHICS

Because Super NES Super Scope operations are based on the detection of ras-
ters on a television screen, the screen used must have a minimum level of bright-
ness.

Of particular concern is the fact that the Super NES Super Scope is not sensitive
to the color red. This is due to differences in the afterglow characteristics of the
fluorescent materials used in the Braun tube for the three colors, red, green and
blue. The period of florescence for red is relatively longer, as shown in the table
below, and hence the change in the volume of light over time is smaller (16 KHz
horizontal synchronization frequency component), and raster timing is more diffi-
cult to detect.

Red 1.2 msec
Green 300 psec
Biue 250 sec

The minimum level of brightness which the Super NES Super Scope can detect is
very difficult to predict due to the various factors involved (television type, year of
make, screen adjustment, etc.). An Optical Color Sensitivity Chart is provided on
the following page for programming reference.

If you wish to detect the location on the screen in one-dot increments or draw a
dark picture, such as of outer space, you may wish to insert a bright single-color
screen for one frame.

When accuracy is important, be careful of the variation in luminosity across the
screen. On a 14-inch screen there is about 1.5 times variation in luminosity be-
tween the center and the perimeter of the screen. When the screen is dark, the
Super NES Super Scope signal may be delayed, and the location detected will be
shifted to the right. This may be corrected in the program or the Super NES color
operation function may be used to correct for luminosity.

NOTE: Nintendo’s products and game programs, designed in accordance
with these specifications, are subject to claims of patent and patent pending
owned and/or licensed by Nintendo exclusively for the benefit of Nintendo
and its authorized licensees. Nintendo does not license such rights for any
other use or purpose. Nintendo does not warrant or represent against
claims of patent infringement by third parties.

4-5-1

SNES DEVELOPMENT MANUAL

5.2 SUPER NES SUPER SCOPE OPTICAL COLOR SENSITIVITY
CHART

1F
1E
1D
1C
1B
1A
19
18
17
16
15
14
13
%12
M1
Z10
O0F
S oE
oo
Q
® 0B
0A
09
08
07 ;
06 :
05 /
04 :
;
[]
[]
[}
:

g

03 Insensitive

02
01
00

0123456789ABCDEF10 12 14 16 18 1A 1C 1E1F
BLUE Color Code

SONY KV-14MD1 RGB MULTI
Luminosity White Center

Figure 4-5-1 Optical Color Sensitivity Chart

The Super NES Super Scope is not sensitive to red at all. The error increases in
area “A”, above. There is no problem in area “B”. This chart is based on the mea-
surement of a single color on the screen and should be used as a reference only,
since the screen pattern does introduce variations.

4-5-2

SUPER NES MOUSE SPECIFICATIONS

Chapter 6. Super NES Mouse Specifications

6.1

INTRODUCTION TO SUPER NES MOUSE

The Super NES Mouse is a special purpose serial mouse. Displacement data de-
tected in the mouse is processed on a custom chip. Data is input to the Super
NES console via the 7 pin connector as key data. The mouse does not burden the
program in any way. The programmer need only call the standard basic input/out-
put system (BIOS) subroutine for processing mouse data. Thus, the Super NES
Mouse is substituted for the standard controller. The mouse has three tracking
speeds. A speed selection switch inside the mouse can be controlled by the fol-
lowing two methods.

* (Game software which allows user selection

* Game software which provides a fixed speed

4-6-1

SNES DEVELOPMENT MANUAL

6.2

SUPER NES MOUSE DATA FLOW

Super NES Mouse data is transmitted to the Super NES control deck in a serial in-
put format, like the standard controller. A 32 bit data string is transmitted; howev-
er, only 24 bits are used. The figure below shows a valid data string transmitted to
the Super NES control deck, from the Super NES Mouse. Signals from the Super
NES Mouse are transmitted in negative logic and converted to positive logic data
strings by the input inversion buffer in the Super NES control deck. Note that all
the data shown has already been loaded into the Super NES control deck.

SDO SD1 SD2 SD3 SD4 SD5 SD6 SD7

- Unused —

- -
‘ SD8 SD9 SD10 SD11 SD12 SD13 SD14 SDi5

R L Speed data Signature
Button| Button P | 0 ()gI 0 |, 1

SD10 and 11 contain tracking speed data: 00 = slow, 01 = normal, and 10 = fast.

-

s -
L SD16 SD17 SD18 SD19 SD20 SD21 SD22 SD23

Y |- Y Displacement —
Direction | | | | | |

~SD16 = 0 for downward, 1 for upward.

- -
SD24 SD25 SD26 SD27 SD28 SD29 SD30 SD3t

X -+ X Displacement >
Direction | |] | | |

SD24 = 0 for right, 1 for left.

Figure 4-6-1 Valid Super NES Mouse Data String

4-6-2

SUPER NES MOUSE SPECIFICATIONS

6.2.1

6.2.2

DATA TRANSMISSION

The Super NES Mouse has four 8-bit shift registers. These registers are
serially connected as indicated by the arrows in the figure on the previous
page. The Super NES Mouse transmits 32 bits of data to the Super NES
control deck following each OUTO pulse, using CUPOQ as a clock pulse.
The Super NES control deck transmits this OUTO pulse at a fixed interval.
The sequence is from SDO to SD31.

READ METHODS

For details concerning the manner in which the Super NES control deck
reads serial controller data, refer to “Joy Controller” in the “Software” sec-
tion of this manual.

6.22.1 METHOD 1

Sixteen bits are read by hardware and 16 bits are read by soft-
ware. Any complications arising from the use of this method
may be avoided by using the enclosed standard BIOS,
“mouse_read”.

6.2.22 METHOD 2
Thirty-two bits are read by software.

CUPO

—<soo ><SD1 ><soz><sos>< so4>§os~soz
4016 D0 _/_/_/___ /N /N _____

§4o17 DO)

SD--)

Figure 4-6-2 Serial Data Read Timing

4-6-3

SNES DEVELOPMENT MANUAL

6.3 SPEED SWITCHING

Super NES Mouse speed can be switched as described in the following para-

graphs.
6.3.1

6.3.2

6.3.3

OouTo

USING SOFTWARE

The programmer should write 1 in DO of 4016H (OUTO is HI), and imme-
diately read 4016H. (Read 4017H for controller 2). Then, set OUTO to
LOW, and immediately read 4016H again. (Read 4017H for controller 2).
The mouse speed will switch to the next setting, in the order of slow, nor-
mal, fast, and back to slow, each time this operation is performed.

USE OF OUTO AND CUPO SIGNALS

Set OUTO to HI, and set CUPO once to [LOW — HIGH] (read 4016H).
Next, set OUTO to LOW, and once again set CUPO to [LOW — HIGH].
This changes the mouse tracking speed by one setting. The speed is
changed by two settings if CUPO is set LOW to Hl twice while OUTO is HI.

CAUTIONS

Once switched, the speed mode is output to SD10 and SD11. Note that
the speed setting in SD10 and SD11 may not be the same as the speed
setting in the mouse. The mouse tracking speed should always be
switched once immediately after connecting the mouse to ensure that the
mouse tracking speed and the speed setting in SD10 and SD11 are the
same. This should also be done when the mouse is accidentally discon-
nected during a game.

The sample software MOUSE.X65 contains a subroutine for switching
speeds called speed_change.

(Refer to “Mouse Speed Switching Routine” in the following chapter.)

CUPO U U

4-6-4

SUPER NES MOUSE SPECIFICATIONS

G

6.4 DATA
6.4.1

6.4.2

6.4.3

SIGNATURE (SD12~SD15)

The signature is stored in SD12~SD15. Use this code to identify what is
currently connected to the 7 pin console connector. (When using the
standard BIOS, check the connection with mouse_con in the Super NES
register. Refer to “Using the Standard BIOS”.) When the mouse is con-
nected, the code is 0001B. Check the signature to verify whether or not
the mouse is connected. If a different signature appears (signatures up to
1111B may be assigned to input devices other than a mouse), input data
should be inhibited. When nothing is connected or a standard controller is
connected, the signature is 0000B.

SPEED DATA (SD10 and SD11)

The speed data identifies whether the speed mode in the mouse is set to
slow (00B), normal (01B) or fast (10B). The mouse contains an internal
speed switching circuit which switches between the three different track-
ing speeds. Switching between speeds is done using software in the Su-
per NES console. (Refer to “Speed Selection and Cursor Movement” to
switch the tracking speed). SD10 and SD11 contain the data the mouse
transmits to the Super NES console to inform the Super NES console
which speed mode is currently active.

LEFT AND RIGHT ACTUATORS (SD8 and SD9)

Bit SD9 is “1” when the left mouse actuator is pressed, and SD8 is “1”
when the right actuator is pressed.

4-6-5

SNES DEVELOPMENT MANUAL

6.4.4 X,Y ABSOLUTE DISPLACEMENT (SD16~SD31)

When moving an object or BG with the mouse in a positive direction
(SD16 and SD24 = 0), add the X and Y data to the respective horizontal
and vertical positions. When moving an object or BG in the negative di-
rection (SD16 and SD24 = 1), subtract the seven bits, which are the X
and Y data less the direction bits (SD16 and SD24) from the positions.
Note that SD16 and SD24 are the most significant bits and SD23 and
SD31 are the least significant bits.

MSB- - — LSB
SD16SD17SD18 SD19SD20 SD21SD22/SD23 Jirection of
l?%}a? "S"g‘fyr veeed ™0 D6 D5 D4 D3 D2 D1_Do| Down
1, D6 D5 D4 D3 D2 D1 DO Up

0 0 | Slow 4 «———— Y Displacement——»:
Direction :

v @——XDispIacement——»f
SD24 SD25 SD26 SD27 SD28 SD29 SD30:SD31| Drection of
1 0 | Fast O D6 D5 D4 D3 D2 D1 DO| Right

1 D6 D5 D4 D3 D2 D1 DO| Left
D6~DO0 change with the amount of mouse displacement. (Max. 3F)

0 1 [Normal

Figure 4-6-3 Explanation of Data Strings 2 Bits or Longer

4-6-6

SUPER NES MOUSE SPECIFICATIONS

6.5 SUPER NES MOUSE SPECIFICATIONS

6.5.1 ELECTRICAL SPECIFICATIONS
Operating voltage: 5V + 10%

Current consumption: 50 mA (maximum)

6.5.2 OPERATIONAL AND ENDURANCE SPECIFICATIONS
Resolution: 50 counts/inch + 15%
Tracking speed: 250 mm/sec (maximum)
Useable Life: 5000 hours in powered state (min.)
(with vertical load of 100 g and voltage of 5V + 5%.)

Actuators: two tact switches (guaranteed to endure at least 2.5 million en-
gagements.)

6.5.3 DIMENSIONS
Length: 98 mm
Width: 64 mm
Height: 35 mm
Cable length: 1.4 m
Weight: approximately 140 g

((‘/({c

Left Actuator

Figure 4-6-4 Super NES Mouse Dimensions

4-6-7

7.1

SNES DEVELOPMENT MANUAL

Chapter 7. Using the Standard BIOS

THE STANDARD BIOS

Nintendo strongly recommends the use of the following standard BIOS with all Su-
per NES Mouse related programming. If the standard BIOS is not used, future
modifications to the mouse, the Super NES control deck, or related software,
hardware, or accessories will likely impair or limit the future use and/or compat-
ability of such non-standard programs.

The software enclosed contains a file called MOUSE.X65. This file has two sub-
routine programs.

1. mouse_read: reads serial data from the mouse.
2. speed_change: switches the mouse speed.

Whenever mouse_read is used, speed_change should also be used. An explana-
tion of how to use these sub-routines is given below. Refer to”Registers” for a
summary of the registers needed to use the standard BIOS, mouse_read, and
speed_change.

4-7-1

USING THE STANDARD BIOS

7.2

MOUSE SERIAL DATA READ ROUTINE (mouse_read)

This routine is used in the same way the key data read subroutine is used with a
standard controller. Mouse_read must be called as a subroutine in the main pro-
gram at every frame. All information needed for using the mouse can be found in
the registers shown in the figure, “Standard BIOS Output Register”, on the follow-
ing page. (Data is read when the mouse is connected to either connector 1 or 2.)

Cautions concerning this program:

1. The program, mouse_read, uses an automatic key data read function to
read the serial data from the mouse. Therefore, the automatic read func-
tion must always be turned on when the standard BIOS, mouse_read, is
used.

2. Do not call this subroutine during the automatic read (hardware read).

Refer to “Joy Controller” in the Software section of this manual to cir-
cumvent the timing problem.

3. Always use mouse_read and speed_change together. The mouse track-
ing speed must always be switched once immediately after connecting
the mouse to the Super NES control deck, mouse_read uses speed_-
change to do this automatically. The paragraph titled “Super NES
Mouse Speed Switching Routine” describes how to use the subroutine,
speed_change.

4-7-2

SNES DEVELOPMENT MANUAL

When connected to connector 1

When connected to connector 2

mouse_con0 mouse connection info.

mouse_con1 mouse connection info.

D7 D6 D5 D4 D3 D2 D1 DO

D7 D6 D5 D4 D3 D2 D1 DO

?

1 1 1 1

?

| 1 | |

mouse_sp0 mouse speed information

mouse_sp1 mouse speed information

D7 D6 D5 D4 D3 D2 D1 DO

D7 D6 D5 D4 D3 D2 D1 DO

?1 ?

[L1

?21 ?

1 (|

mouse_sw0 mouse switch continuous

mouse_sw1 mouse switch continuous

D7 D6 D5 D4 D3 D2 D1 DO

D7 D6 D5 D4 D3 D2 D1 DO

R L

R(L

T N |

mouse_swt0 mouse switch trigger

mouse_swt1 mouse switch trigger

D7 D6 D5 D4 D3 D2 D1 DO

D7 D6 D5 D4 D3 D2 D1 DO

IlIIRL

IIIIRL

mouse_y0, Displacement in Y direction

D7 D6 D5 D4 D3 D2 D1 DO

Dir. |<--Displacement in Y direction--3

mouse_y1, Displacement in Y direction

D7 D6 D5 D4 D3 D2 D1 DO

Dir. k--Displacement in Y direction-->|

1 [1 1 1

mouse_x0, Displacement in X direction

mouse_x1, Displacement in X direction

D7 D6 D5 D4 D3 D2 D1 DO

Dir. k--Displacement in X direction-->

| L1 |

D7 D6 D5 D4 D3 D2 D1 DO

Dir. |<--Displacement in X direction--3

| 1 L1 1

Figure 4-7-1

Standard BIOS, Output Register

4-7-3

Significance of data

0/ not connected
1/ connected

D1:0 D0:0 slow
D1:0 DO:1 normal
D1:1 DO:0 fast

R: right button
L: left button
0/OFF
1/0N

R: right button
L: left button
0/OFF

1/ ON

Dir: Direction bit
0/ down
1/up

Dir: Direction bit
0/ right
1/ left

7.3

USING THE STANDARD BIOS

8

SUPER NES MOUSE SPEED SWITCHING ROUTINE /
speed_change (Screen cursor, OBJ and BG move speed
switching)

This section describes the speed switching program, speed_change, found in the
“MOUSE.X65” program (supplied on sample diskette).

Connector 1. Set the X register to “0”

Set the number corresponding to the desired speed in the
mouse_sp_set0 register, where slow = 0, normal = 1 and
fast = 2.

Connector 2. Set the X register to “1”.
Set the number corresponding to the desired speed in the

mouse_sp_set1 register.

After setting the X and mouse_sp_set0 or mouse_sp_set1 registers, call the

speed_change subroutine. The speed will be switched to the desired setting in
one step. (Because the mouse tracking speed can only be switched in a rotary
switch fashion, the speed_change subroutine is useful when switching the speed .
twice; for example, to switch from “normal” to “slow”.)

When the mouse tracking speed is changed, the new speed data is transmitted by
the mouse, and mouse_sp0 and mouse_sp1 data are rewritten.

7.3.1 CAUTION

Do not forget to set the X and mouse_sp_set0 or mouse_sp_set1 regis-
ters.

Figure 4-7-2 Examples of Speed Switching Program Subroutine Call

Example 1
ldx #$00 ; Connector 1
Ida #$01 ; Switch to “normal” speed

sta mouse_sp_set0
jst speed_change

Example 2
ldx #$01 ; Connector 2
Ida mouse_sp0 ; Look at the current speed, and increase the speed
inc a ; to the next highest setting
cmp #$03
bne change ; If the current speed is “fast”, it changes to “slow”
lda #$00
change

sta mouse_sp_set0
jsr speed_change

474

SNES DEVELOPMENT MANUAL

7.3.2

USING THE PROGRAM

Mouse_read automatically completes the above speed switching at the
time the mouse is connected. (Refer to “Programming Cautions”, ltem 3
later in this section). If mouse_sp_set0 and mouse_sp_set1 have been
cleared, then the mouse speed is “slow” when the mouse is connected.

If the mouse becomes disconnected and reconnected during a game and
this program is not being used, the speed must be switched once.
Mouse_read does this automatically when the mouse is re-connected.
The speed setting in that case is the same as immediately before the
mouse became disconnected.

If mouse_read is used, the entire process is done automatically. No addi-
tional steps need be taken. Mouse_read also constantly monitors the
speed data (mouse_sp0O and mouse_sp1), thus allowing speed changes
to be programmed at any time during a game.

4.7-5

USING THE STANDARD BIOS

—

7.4 SPEED SELECTION AND CURSOR MOVEMENT

741

7.4.2

7.4.3

Fast (10B)

The ratio of cursor displacement to mouse displacement is automatically
adjusted between 6 levels, from 1:1 to 6:1. The ratio varies according to
the speed the mouse is moved. When the mouse is moved slowly, the ra-
tio is 1:1 and when the mouse is moved quickly, the ratio increases to a
maximum 6:1. To move the cursor a short distance, the mouse is moved
slowly. To move the cursor a long distance, the mouse is moved quickly.
When the mouse is set to “fast”, the cursor moves a longer distance the
faster the mouse is moved so that the distance the mouse must be
moved on the table is minimized.

Normal (01B)

The ratio of cursor displacement to mouse displacement is also automat-
ically adjusted, as with the “fast” setting. The ratio, however, is smaller.

Slow (00B)

The ratio of cursor displacement to mouse displacement is 1:1. This ratio
is always fixed. For example, if the cursor moves 5 cm when the mouse is
moved 10 cm, then the cursor will move 10 cm when the mouse is moved
20 cm. The distance the cursor moves is always proportionate to the dis-
tance the mouse is moved whether the mouse is moved quickly or slowly.
When the mouse is set to “slow”, the mouse must be moved a long dis-

tance on the table to move the cursor a long distance.

Note: 00B, 01B, and 10B are the mouse_sp0 and mouse_sp1 D1 and
DO bit data.

4-7-6

SNES DEVELOPMENT MANUAL

7.5 REGISTERS

The registers required for these subroutines are as follows.

mouse_con0,

mouse_yo0,

mouse_x0,

mouse_swo,

mouse_swit0,

mouse_sp0,

mouse_sb0,
mouse_sp_setO0,
connect_st0,

regOl,

mouse_conf1

mouse_y1

mouse_x1

mouse_sw1

mouse_swti

mouse_sp1

mouse_sb1
mouse_sp_set1
connect_st1

regOh

Mouse connection status (indicates the con-
nector to which the mouse is connected.)

Mouse Y axis data for connectors 1(Y0) and
2(Y1)

Mouse X axis data for connectors 1(X0) and
2 (X1)

Actuator status for connectors 1 and 2 (01H
= right actuator, 02H = left actuator)

Trigger status for connectors 1 and 2.

Mouse speed mode for connectors 1 and 2
(OOH = slow, 01H = normal, 02H = fast)

Work register for trigger status
For speed changes
DS1 connection start check.

Multi-purpose work register

4-7-7

USING THE STANDARD BIOS
l % . i l

R KKK AR KA KA KT I A KA KRR KRR A A A A KA KA KRR KA KA K KA I KA I AR AT RR KA TR I AT A ko kA hkk Rk ko kkhhhkkkkkkkkk kA kkk

; mouse.x65

> Super NES Mouse System file
> March 11, 1992

7 (c) 1992 Nintendo of America

» J 3 Je de g o sk e e e o e vk ok e o vk sk vk o vk ok S ok e ok ok ok ok o ok o o o Tk ok ok o o ke o ke gk ke ok e vk ok ok ok o ok o 3k o 3 o o 9 ke Sk 9k ok ok o o ok o o ok ke ok e o o ok sk e ke e ek e e ke
’

o % e v d e o e 2 v e v s e ke vk e b e o ol ok sk vk e ok vk ok 3k dk ok ok ol e 2k dk I sk A 3k ke 3k ok s ok ok Sk sk ok e e e vk Je ke o e % ok ok ok e S sk v sk e ok o e % vk ok ok v % ok e sk e ok o o o vk ok ok ok ok o e e de e e ke ok
Hl

A RARTET A AN AATA IR TR RIART A AR A AR ARk kkk kA kA kk ko kkkdkkdkkhhhhkkhkhdkdkkhdhkrkhkdkdkkkkhkdhkhkikdkkik
'

> Mouse Driver Routine (Ver 1.00)

R AR R A AR A A AR AR A AR I A AR A IR A A KRR AR I RA AT A AR AR I A AR A Ak Ak Ak kAR A AR AR ARk Ahhh ko kkhhkk
)

e e e e e e e e ke ke vk vk ke 3k e e ok vk dk e ok ke vk sk dke o ok ke 3k ok e ok ok ke sk 3k ok ok d S ok e 3 ok e e 9 sk sk ok o ok 9 ok sk e ke ok e e e gk o e S e e ke e ok sk e ke e ok vk ok e de ek ke s e ek ek ok e ke ok

db ‘START OF MOUSE BIOS’ ;do not delete

i RAM Definition

y

reg0
regOl ds 1 ; Work registers
regOh ds 1 ;

mouse_con
mouse_con0 ds 1 ; Mouse connection port D0=4016
mouse_con1 ds 1 ; Mouse connection port D0=4017

mouse_sp_set
mouse_sp_set0 ds
mouse_sp_set1 ds

BN

; Mouse speed setting (joy1)
; Mouse speed setting (joy2)

——rh

mouse_sp
mouse_sp0 ds 1 ; Mouse speed (joy1)
mouse_sp1 ds 1 ; Mouse speed (joy2)
mouse_y0 ds 1 ; Mouse Y direction (joy 1)
mouse_y1 ds 1 ; Mouse Y direction (joy 2)
mouse_x0 ds 1 ; Mouse X direction (joy 1)
mouse_x1 ds 1 ; Mouse X direction (joy 2)
mouse_sw

478

SNES DEVELOPMENT MANUAL

BT

mouse_swO0
mouse_swi1

mouse_swt
mouse_swit0
mouse_swti

mouse_sb
mouse_sb0
mouse_sb1

cursol_x
cursol_y

ds
ds

ds
ds

ds

ds

ds
ds

; Mouse button turbo
; Mouse button turbo

; Mouse button trigger
; Mouse button trigger
; Previous switch status

;Cursor X position
;Cursor Y position

479

USING THE STANDARD BIOS

7 mouse_read
¥ If this routine is called every frame, then the mouse status will be set to the
; appropriate registers.
;¥ INPUT
;* None (Mouse key read automatically)
;*OUTPUT
7 Connection status (mouse_con) D0=1 Mouse connected to Joy1
> D1=1 Mouse connected to Joy2
> Switch (mouse_sw0,1) DO=left switch turbo
;* D1=right switch turbo
> Switch (mouse_swt0,1) DO=left switch trigger
7 D1=right switch trigger
> Mouse movement (ball) value
i (mouse_x) D7=0 Positive turn, D7=1 Negative tumn
> D6-D0 X movement value
7 (mouse_y) D7=0 Positive turn, D7=1 Negative turn
> D6-D0 X movement value
mouse_read

php

sep #$30
_10

Ida $4212

and #%00000001

bne _10 ; Automatic read ok?

Idx #$01 ; Joy2

Ida $421a

jsr mouse_data

Ida connect_st1

beq _20

jsr speed_change

stz connect_st1

4-7-10

SNES DEVELOPMENT MANUAL

20

_30

mouse_data

m10

plp
s

dex
Ida
jsr

Ida
beq

jsr
stz

plp
rts

sta

and
cmp
beq

stz

stz
stz
stz
stz
stz

rts

Ida
bne

Ida
sta
sta
rs

$4218 ; joy1
mouse_data

connect_st0
_30
speed_change
connect_st0

regOl ; (421a 4218 save to reg0)
#%00001111
#$01 ; Is the mouse connected?
_m10
mouse_con0,x ; No connection.
mouse_x0,x
mouse_y0,x

mouse_sw0,x
mouse_swt0,x
mouse_sb0,x

mouse_con0,x ; When mouse is connected, speed will change.

_m20 ; Previous connection status
; (mouse.com judged by lower 1 bit)
#$01 ; Connection check flag on

mouse_con0,x
connect_st0,x

4-7-11

USING THE STANDARD BIOS

|

_m20

_m30

~m40

Ida
Isr
rol
rol
dey
bne

stz

rol
rol
rol
rol

Ida
eor
bne

stz
s
Ida
sta

sta

s

#16

$4016,x

a
mouse_x0,x
mouse_y0,x

_m30
mouse_swO0,x

regOl
mouse_swO0,x
regOl
mouse_sw0,x

mouse_sw0,x
mouse_sb0,x
_m40

mouse_swt0,x

mouse_sw0,x
mouse_swt0,x
mouse_sb0,x

; Read 16 bit data.

; Switch turbo

; Get switch trigger

4-7-12

SNES DEVELOPMENT MANUAL

.**
3

1
*

; Speed_change

;" Set speed to mouse_sp_set. Give mouse port the value of x and call this routine.

;* If this routine is called without setting mouse_sp_set, then the previous speed will be
;" assigned to the current speed.

;* Normally, the mouse speed data will be saved to mouse_sp.

;* If the mouse speed cannot be set, then the error code will be set to mouse_sp.

;Y INPUT

3 X=connection port (X:0=joy1 1=joy2)

> MOUSE_SP_SET0= JOY1 setting speed

> MOUSE_SP_SET1= JOY2 setting speed

;* OUTPUT

7 MOUSE_SPO = Joy1 Mouse speed

> (O=slow, 1=medium, 2=fast, $80=error code)
7 MOUSE_SP1 = Joy2 Mouse speed

; (O=slow, 1=medium, 2=fast, $80=error code)

Bk R e L L L S B 2 2t R f E R b L Ll u U U U A AUV
)

speed_change

php
sep #$30

Ida mouse_con,X

beq _s25
Ida #$10
sta regOh
_s10
lda #$01
sta $4016
Ida $4016,x ; Speed change (1 step).
stz $4016
lda #$01 ; Read speed data.
sta $4016 ; Shift register clear.
lda #$00
sta $4016

4-7-13

USING THE STANDARD BIOS

_s20

_825

s30

sta

Ida
dey
bne

Ida
Isr
rol

Ida
Isr
rol

Ida

cmp
beq

dec
bne

Ida
sta

plp
rts

db

db

mouse_sp0,x ; Speed register clear.

#10 ; Shift register read has no meaning.
$4016,x

_s20

$4016,x ; Read speed

a

mouse_sp0,x
$4016,x

a
mouse_sp0,x

mouse_spO0,x

mouse_sp_set0,x ;Set speed or not?

_s30

regCh ; For error check
_s10

#$80 ; Speed change error.

mouse_spO0,x

‘NINTENDO SNES MOUSE BIOS Ver1.00’
;If user modifies program, then change to

;'MODIFIED FROM SNES MOUSE BIOS Ver1.00’
‘END OF MOUSE BIOS’

4-7-14

;do not delete.

;do not delete.

SNES DEVELOPMENT MANUAL

Chapter 8 Programming Cautions

Programs should be written so that controller input can be used from the time the power
is tured on until the menu screen appears. (From the demo screen until the actual start
point).

8.1 CAUTION #1

The explanation given in Chapter 6 is based on data read by the Super NES con-
trol deck. Note that the data sent by the Super NES Mouse is in negative logic,
and is inverted inside the Super NES control deck. (There is a bit inversion buffer
after the Super NES controller connector.)

8.2 CAUTION #2

When not using the standard BIOS, constantly check the mouse connection code,
not just at start up. Take precautions to prevent problems when changing from a
mouse to another input device during a game. This will protect the software from
data input through other input devices. When using the standard BIOS, the mouse
connection code is automatically checked constantly. If the mouse is replaced by
another input device, data will not be received at that time.

This holds true for other input devices as well. If, when using a program requiring
the standard controller, the programmer constantly checks that the connection
code is “0000B”, no errors will occur even if another input device is connected.

8.3 CAUTION #3

As mentioned earlier, the mouse speed and speed data are initially undetermined.
When not using the standard BIOS, always switch the speed of the mouse once
after connecting it. Otherwise, the speed data (SD10,SD11) and actual speed set-
ting of the mouse may be different. (Although they might mismatch initially, after
the speed is switched automatically or manually once, the speed data and speed
setting are always in agreement.) The speed switching program should be execut-
ed before any data is transmitted by the mouse. (If the mouse becomes discon-
nected during a game, always run the speed switching program once immediately
after re-connecting the mouse.) When using the standard BIOS, the speed switch-
ing program is run automatically whenever the mouse is connected, and no addi-
tional steps need be taken.

8.4 CAUTION #4

The standard BIOS, mouse_read, can be included in the program without modifi-
cation and may be treated like a controller read routine. Call mouse_read as a
subroutine.

Note that the standard BIOS, mouse_read, is designed for mouse-only software.
Take caution when using a standard controller and mouse at the same time.

4-8-1

PROGRAMMING CAUTIONS

8.5

8.6

CAUTION #5

The standard BIOS is written entirely in the eight-bit mode. Therefore, the com-
mands php, plp and sep are executed after it is called and before returning to the
main program. They may be removed when the eight-bit and sixteen bit modes
are carefully managed.

CAUTION #6

Refer to “Mouse Specifications”, for mouse characteristics such as tracking
speed = 250 mm/sec., when writing any software.

Note about the enclosed software;

The disk contains sample software which uses the standard BIOS
(MOUSE.COM). MOUSE.COM displays data on the screen transmitted by
the mouse and stored in each register. The number strings shown at the
bottom represent 32-bit mouse data strings. The cursor will follow the
movement of the mouse horizontally or vertically on the screen. Move the
cursor to the heart symbol and push the left mouse actuator to change the
cursor tracking speed.

482

SNES DEVELOPMENT MANUAL

Chapter 9 MultiPlayer 5 Specifications

9.1

INTRODUCTION TO MULTIPLAYER 5

The Super NES MultiPlayer 5 is a standard term referring to any controller or
adapter used to accommodate 3 ~ 5 players. The adapter is connected to the Su-
per NES control deck and allows up to five people to play at one time. The adapter
references all controller data simultaneously, and does not give an unfair advan-
tage to any one controller during a game. The adapter’s controller ports are identi-
cal to the Super NES controlier port. Therefore, many devices which can be
connected to the controller port may also be connected to MultiPlayer 5.

The adapter should be equipped with a switch which is user selectable between a
2 player (2P) mode and a 5 player (5P) mode (for three to five players). When the
adapter is in the 2P mode, the software treats MultiPlayer 5 controller port #2 as
an extension of controller port #2 of the Super NES control deck. A BIOS is pro-
vided on 3.5” diskette to read the multiple controller data input to MultiPlayer 5.

This chapter describes how data is read from peripheral devices connected to
MultiPlayer 5. For reliable operation, the supplied BIOS should always be used.
Refer to the following chapter for details on the supplied BIOS.

There are no standard entries that are required in manuals provided with games
that use MultiPlayer 5. However, the manual should explain how to connect and
operate MultiPlayer 5 when playing a multi-player game. A MultiPlayer 5 logo is
available for use on packaging and advertising. The logo artwork may be obtained
through the NOA Licensing Department.

4-9-1

MULTIPLAYER 5 SPECIFICATIONS

9.2 HARDWARE CONNECTIONS

The figure below demonstrates a typical hardware arrangement using the Super
NES control deck and a MultiPlayer 5 device.

gah &
8| &)
M
u
I |5
ot e
ge e
Super NES - '|° v
Control Deck a i
?2 y g = M
§n-_/ @ e E
r 8% %)

(3)

CONTROLLER
PORT §#2

]
&

Figure 4-9-1 MultiPlayer 5 Device Hardware Connections

The MultiPlayer 5 device is connected to the Super NES control deck through
controller port #2. The MultiPlayer 5 device should not be used with controller port
#1 of the control deck. This should be carefully explained and addressed in all
software and related manuals.

4-9-2

SNES DEVELOPMENT MANUAL

9.3 MODES OF OPERATION

Each MultiPlayer 5 device is equipped with a switch for changing between the 2P
and 5P modes. The function of this switch is demonstrated in the table below.

2 PLAYER MODE 5 PLAYER MODE
PLN SYMBOL EXPANSION EXPANSION
CONNECTORS CONNECTORS
@@ | @ ® @@ | @ | 6
1 +5V X X X | X X
2 CUP X X X | X X
3 ouTo X X X | X X
4 DO X NC X X | X X
5 D1 X
NC
6 PP X
7 GND X X X | X X
Adapter
Connection NOT
Status AVAILABLE AVAILABLE
Detection
X = Connected
NC = Not Connected
Table 4-9-1 MultiPlayer 5 Switch Function

9.3.1 TWO PLAYER MODE

9.3.2

In the 2P mode, only controller port #2 of the MultiPlayer 5 device can be
used. In this mode, MultiPlayer 5 controller port #2 performs the same
functions as controller port #2 of the Super NES control deck.

FIVE PLAYER MODE

In the 5P mode all connectors of the MultiPlayer 5 device can be used. This
permits up to 5 players to play a game at one time (counting controller port
#1 of the Super NES control deck).

493

MULTIPLAYER 5 SPECIFICATIONS

—

9.4 PROGRAMMING CAUTIONS FOR COMPATIBLE SOFTWARE

9.4.1

9.4.2

9.4.3

9.4.4

9.4.5

9.4.6

9.4.7

CAUTION #1

Games should be programmed to use the MultiPlayer 5 device only when
the device is connected to controller port #2 of the Super NES control deck.
Games should display the following warning message and the program
should halt, when the MultiPlayer 5 device is connected to controller port
#1 of the Super NES control deck and the MultiPlayer 5 is in the 5P mode.

“The Super NES MultiPlayer 5 Adapter must be connected to
Controller Socket #2.”

CAUTION #2
Games should be programmed so that game play can be continued if the
MultiPlayer 5 or one of the devices connected to it becomes disconnected.

CAUTION #3

The Super NES Super Scope can not be used with the MultiPlayer 5. The
following error message should be displayed and the program should halt if
the Super NES Super Scope is connected to the MultiPlayer 5 using the 5P
mode.

“The Super NES MultiPlayer 5 Adapter is not designed for use with -
the Super NES Super Scope.”

CAUTION #4

The Super NES Mouse can not be used with the MultiPlayer 5. The follow-
ing error message should be displayed and the program should halt if the
Super NES Mouse is connected to the MultiPlayer 5 using the 5P mode.

“The Super NES MultiPlayer 5 Adapter is not designed for use with
the Super NES Mouse.”

CAUTION #5

Use the supplied BIOS whenever possible to ensure hardware and soft-
ware compatibility. If a custom BIOS is used, read connector #2 and #3,
followed by connector #4 and #5; because PP7 changes from a logic 0 to 1
slowly. Refer to “Reading Data” on the following page.

CAUTION #6
Programs can not detect whether the MultiPlayer 5 is connected when the
MultiPlayer 5 is in the 2P mode.

CAUTION #7

Software should be evaluated using the MultiPlayer Development Assem-
bly prior to submission. This assembly may be obtained through the NOA
Parts Department. Refer to “Super NES Parts List” in the “Supplemental In-
formation” section of this manual.

4-9-4

SNES DEVELOPMENT MANUAL

9.4.8 CAUTION #8
When using the MultiPlayer 5 with the supplied BIOS, use caution in the or-
der of the BIOS call (refer to “Supplied BIOS Execution” in the following
chapter).

9.5 READING DATA
9.5.1 STANDARD CONTROLLER CONNECTED (5P MODE)

When the MultiPlayer 5 is in the 5P mode, data from the four connected
controllers is read in two groups; controllers 2 and 3, and controllers 4 and
5. Data from each of these groups is read in parallel starting from <4017H>
DO and D1. The bit at PP7 (<4201H> D7) is used to switch between the
two groups. The normal condition of PP7 is 1. If changed to 0, it should be
set back to 1 immediately.

PP7 =1 Read controller 2 data from <4017H> DO

Read controller 3 data from <4017H> D1
PP7 =0 Read controller 4 data from <4017H> DO

Read controller 5 data from <4017H> D1
9.5.1.1 READ TIMING

Read timing is demonstrated in the figure below.

OUTOWR “1” I‘l

write to “mn
4016t Do) ©
* Note
PP7WR “1” [
write to “o
4201H D7

?rgg:ll)jo RD ——Qontroller 2 Dat >—<Controller 4 Dat>—

4017D1 RD

(read) < Controller 3 Dat>———<ControlIer 5 Dat>‘
|

17 Bits 17 Bits

Figure 4-9-2 MultiPlayer 5 Read Timing Chart, 5P Mode

Note: The normal state outputs “1” to PP7. After reading Controller Data 4
and 5, the state should be returned to “1”.

4-9-5

MULTIPLAYER 5 SPECIFICATIONS

B

9.5.1.2 DATA FORMAT

The following table lists the MultiPlayer 5 data format when con-
trollers are connected to connectors 2 through 5. An asterisk (*) is
used to show that the indicated data is 0 when that controller is not

c

onnected.

Output “1” in advance to PP7 (<4201H> D7)
Change OUTO (<4016H> DO0) from “0” to “1” to “0”

Content of <4017H>
D7~D2 D1 DO
<4017H> 1st read undefined | Controller 3 B button Controller 2 B button

<4017H> 2nd read | undefined | Controller 3 Y button Controller 2 Y button
<4017H> 3rd read undefined | Controller 3 select button | Controller 2 select button
<4017H> 15thread | undefined | O 0

<4017H> 16th read | undefined | O 0

<4017H> 17th read | undefined | 1 (*) 1(%)

Change the output go

ing to PP7 (<4201H> D7) from “1” to “0”

<4017H> 18th read | undefined | Controller 5 B button Controller 4 B button
<4017H> 19th read | undefined | Controller 5 Y button Controller 4 Y button
<4017H> 20th read | undefined | Controller 5 select button | Controller 4 select button
<4017H> 32nd read | undefined | O 0

<4017H> 33rd read | undefined | O 0

<4017H> 34th read | undefined | 1 (¥) 1(*)

After controller data has been read, change the output to PP7 (<4201H> D7) from “0” to “1”

Table 4-9-2

MultiPlayer 5 Data Format

4-9-6

SNES DEVELOPMENT MANUAL

9.5.2 PERIPHERAL DEVICE CONNECTIONS
The MultiPlayer 5 connectors are identical in shape to the controller ports
of the Super NES control deck. Peripheral devices other than controllers
can be connected. However, some types of devices are not compatible
with the MultiPlayer 5.

9.5.2.1 INCOMPATIBLE DEVICES

The following devices cannot be used with MultiPlayer 5 except for
those devices marked with an asterisk (*), which can be used only
when MultiPlayer 5 is in the 2P mode. If any of the devices marked
with an asterisk (*) are used when MultiPlayer 5 is in the 5P mode,
they either will not operate or may not operate normally.

1*. Any device which uses <4016H> D1 or <4017H> D1 for its
data read.

2*. Any device which uses <4201H> or <4213H>.

3. Any device with an electrical consumption of 17mA or more
per unit.

4*. Any device which detects a CUP signal while OUT 0 is “1”.

5. Any device which transmits data while OUT 0 is “1”.

6. Any adapter used to connect other devices.

Examples of devices which can not be used with MultiPlayer 5:

Super NES mouse (for reason 3).
Super NES Super Scope (for reason 2)
MultiPlayer 5 (for reason 6)

4-9-7

MULTIPLAYER 5 SPECIFICATIONS
|

9.5.2.2 DISSIMILAR DEVICES

Dissimilar devices can be used simultaneously as long as any one
device is not contained in the previous incompatibility list. Differ-
ences in data composition and length between the various devices
will not result in any problems. An example of data read timing for
dissimilar devices is provided below.

v,
<4017H> DO RD Device A Data % Device C Data
<4017H> D1 RD Device B Data Device D Data //j
PP7WR “1”
(write) “Q” | |—
L | L 1
DO (No Data) D1 (No Data)

Device Physical Connections:

Device A = Connector 2 Device C = Connector 4
Device B = Connector 3 Device D = Connector 5

Figure 4-9-3 Data Read Timing for Dissimilar Devices

When the data length between two devices that are read in parallel
is different, the excess part (shaded) is read in with no data. The
above setting is only one example and all four devices do not need
to be connected.

49.8

SNES DEVELOPMENT MANUAL

T

9.6 IDENTIFYING DEVICES CONNECTED TO MULTIPLAYER 5

9.6.1

9.6.2

SIGNATURES

Nintendo has a standard for each “signature” which allows software to de-
tect the type of device connected. Software uses the signature to select the
appropriate operations mode and menu for the connected device and to in-
hibit data from being read from incompatible devices.

The peripheral device signature is contained in bits 13 ~ 16 of the OUT 0
latch pulse (<4016H> DO WR) when read serially from <4016H> DO
(<4017H> DO). Refer to the chapter “CPU Registers” in book 1 for more in-
formation concerning these registers.

The signature for a standard controller is 0000. Refer to device program-
ming documentation for the signature of other devices.

MULTIPLAYER 5 SIGNATURE

MuttiPlayer 5 simply passes on the signature codes for devices connected
to controller ports 2 ~ 5 and does not have a signature code of its own.
However, the following procedure will verify that MultiPlayer 5 is connect-
ed. When performing this procedure, it does not matter whether or not a
device is connected to MultiPlayer 5 controller ports 2 ~ 5.

1. Output “1” to register <4016H> DO.

2. Read register <4017H> D1 eight times and verify that it is
“11111111 (FFH)".

3. Output “0” to register <4016H> DO.

4. Read register <4017H> D1 eight times and verify that it is not
“11111111 (FFH)".

If items 1~4 are all satisfied, MultiPlayer 5 is connected to controller port #2
of the Super NES control deck and the 2P/5P mode switch is in the 5P
mode. The Super NES cannot detect if MultiPlayer 5 is connected when
MultiPlayer 5 is in the 2P mode. To verify that MultiPlayer 5 is connected to
controller port #1 of the Super NES control deck, complete the same test
procedure using register <4016H> D1.

499

MULTIPLAYER 5 SPECIFICATIONS

T

9.7

(Rev 2.3) May 1, 1992

SUPER NES MultiPlayer 5 - SCHEMATIC DIAGRAM

!

b

MULTIPLAYER 5 SCHEMATIC DIAGRAM

X
[=3
—

e o
OoDo0Z
SO00N0 (5

[

X
o
—

CRREEES)

=)

oo o
(e s
>O0000L5

s

HCT241

(@]
L
-

i

220

5P

HCT126
K
[HC4053

OO
o (@]
(& W3 o oot @)
ooz 03220z
>0000a.0
[l
>— Y Yy
Y [
'_
O
I
Y,
_____ N n
! o
<t/
x
ol S
SV b
- o
o
T

HCT241

]
g
7P PLUG

SSLSRER

4-9-10

SNES DEVELOPMENT MANUAL

9.8

READING CONTROLLER DATA

In order to understand the process by which MultiPlayer 5 data is read, the user
must first understand the method by which normal controller data is read. This
method is described in the following paragraphs.

9.8.1 CONTROLLER DATA STORAGE

Controller data is stored at <4218H> ~ <421BH> in the Super NES CPU.
This data, originally transmitted in serial form by the controller, has been
automatically expanded by the CPU internal hardware. The controller auto-
matic read function operates during the PPU V-blank period. Therefore, the
controller status for the previous V-blank is stored at <4218H> ~ <421BH>.
Refer to “Joy Controller” in the “Software” section of this manual.

Note: Super NES CPU registers <421CH> ~ <421FH> are provided for
expansion of controller data storage. However, no data is stored in
this area by MultiPlayer 5 and data held by these registers is ig-
nored.

In addition to reading controller and other external device data automatical-
ly, the Super NES can read data serially using software. Data can also be

read using a combination of the automatic read function (up to16 bits) and
software (from the 17th bit).

4.9-11

MULTIPLAYER 5 SPECIFICATIONS

=

9.8.2 CONTROLLER I/0O PORTS
There are four Super NES I/O ports used for reading controller (or periph-
eral device) data in serial format.

9.8.2.1

9.8.22

9.8.2.3

9.8.24

9.8.25

REGISTER <4016H> (DO, D1 READ)

Bits DO and D1 of this register read peripheral devices connected
to controlier port #1 of the Super NES control deck.

REGISTER <4017H> (DO, D1 READ)

Bits DO and D1 of this register read peripheral devices connected
to controller port #2 of the Super NES control deck.

REGISTER <4016H> (DO WRITE)
This is the controller shift registers’ parallel load control.
REGISTER <4201H> (D6, D7 WRITE)

Bit D6 enables serial output for controller port #1 and bit D7 en-
ables serial output for controller port #2.

REGISTER <4213h> (D6, D7 READ)
Bits D6 and D7 read inputs from the parallel I/O ports.

Only specially designed devices allow data input from registers <4016H>
bit D1 and <4017H> bit D1. When a controller is used by itself (directly con-
nected to the Super NES), this data is undefined.

The following figure demonstrates a valid controller data string. The shad-
indicates data that is automatically read.

ed area

Signature
0 4, 0 , 0

—

-§ -4

SD16

SD17 SD18 SD19 SD20 SD21 SbD22 SDb23

NOT USED
| | | | | |

Figure 4-9-4 Valid Controller Data String

4-9-12

SNES DEVELOPMENT MANUAL

The data for each button is transmitted as “1” when pressed and “0” when
not pressed. The SD16 data bit is used to verify a controller is connected. A
controller is connected to the port when the signature code is 0000 and

SD16 = 1. When the controller is not connected, the signature code is 0000
and SD16 = 0.

4-9-13

MULTIPLAYER 5 SUPPLIED BIOS

Chapter 10 MultiPlayer 5 Supplied BIOS

Super NES hardware and any MultiPlayer 5 program which does not use the supplied
BIOS may not be fully compatible. (When any minor hardware changes are made in the
future, maintaining the compatibility at the BIOS level will have the first priority.)

The enclosed diskette includes the following two files, which compose the BIOS pro-
gram.

* M_CHECK.X65, Version X.XX

e MULTI5.X65, Version X.XX

10.1 FILE DESCRIPTION

The file “M_CHECK.X65" determines whether a MultiPlayer 5 device is connected
to the Super NES. The file “MULTI5.X65” reads controller data for 5 players. The
diskette contains the following 8 files. These files were written using the Super
NES Emulator development system.

10.1.1 BIOS FILES

* MULTI5. X65
* M_CHECK. X65

10.1.2 SAMPLE PROGRAM FILES

TEST. X65
INIT. X65
FONT. X65
MAKE. BAT
TEST. ISX
TEST.COM

10.2 SAMPLE PROGRAM EXECUTION

The enclosed disk also contains a sample program for checking MultiPlayer 5 op-
erations. Using the MAKE file on the enclosed disk, run the program using the Su-
per NES Emulator development tool or the EPROM evaluation board (1Mbit or
larger capacity).

10.2.1 OPERATION PARAMETERS
Assign the following parameters when running the sample program.

Memory map mode: 20 mode
Memory bank to be used: Bank 00, 80H
Use the high speed mode: (3.58 MHz)

4-10-1

SNES DEVELOPMENT MANUAL

10.2.2 SAMPLE PROGRAM UTILIZATION

When power is applied, the program displays the button engagement sta-
tus of the connected controller(s). The program displays a different num-
ber of controllers depending on whether the MultiPlayer 5 is in the 5P
mode or the 2P mode. Button names are not displayed when a controller
is not connected. An error message is displayed when the adapter is con-
nected to controller port #1 of the Super NES control deck.

The program proceeds through the following display format when the Su-
per NES reset button is pressed.

Button Status Display
(Standard Speed Mode)

¢ Reset

Software Register Display
(Standard Speed Mode)

¢ Reset

Button Status Display
(High Speed Mode)

¢ Reset

Software Register Display
(High Speed Mode)

Reset

Figure 4-10-1 Sample Program Display Format

10.3 SUPPLIED BIOS EXECUTION

The supplied BIOS program assumes it is running in synchronization with the Su-
per NES PPU’s NMI interrupt. The program uses the Super NES CPU controller
data automatic read function, so the automatic read function must be enabled
when the BIOS is called (<4200H> D0=1).

The data for 5 controllers is read when the BIOS is called with the automatic read
function enabled. Since the supplied BIOS uses the automatic read function, the
BIOS can not be called more than once per frame (the period from one automatic
read to the next automatic read).

4-10-2

MULTIPLAYER 5 SUPPLIED BIOS

In this BIOS, the OUTO signal is controlled by the Controller Automatic Read
function. The user must ensure that the BIOS is called in the proper order. After
the Super NES CPU Automatic Read period (215 pus from the start of NMI), call
“MULTI5.ASM (X65)” followed by ““M_CHECK.ASM (X65)”". The BIOS must be
called in this order for proper operation.

10.4 SUPPLIED BIOS OUTPUT REGISTER

Super NES Controller Port 2 MultiPlayer 5

Super NES Controller Port1 MultiPlayer 5

M_CHECK.X65
D7 D6 D5 D4 D3 D2 D1 DO
status
(8-bit)
A
Connected = 1
Not connected =0
Connected = 1
Not connected = 0
MULTI5.X65
D15 D14 D13 D12 D11 D10 D9 D8
B Y SE| ST| UP | DN | LT RT
conb
(16-biy D7 D6 D5 D4 D3 D2 D1 DO
Al X L R 0 0 0 0

Controller 5 Button Information

The same format is used for con4~con1 (16 bits each).

con 4 = Controller 4
con 3 = Controller 3
con 2 = Controller 2

con 1 = Controller 1 (Super NES controller port #1)

D7

D6

D5

D4 D3 D2 D1 DO

sgnd
(8-bit)

DO is xxx00000 when no device is connected to the Super NES controller port. DO
is xxx00001 when a controller is connected. DO is undefined for all other devices.

4-10-3

SNES DEVELOPMENT MANUAL

rrrorereer—

The same format is used for sgn4~sgn1(8 bits each).

sgn 4: Connector 4
sgn 3: Connector 3
sgn 2: Connector 2
sgn 1: Connector 1 (Super NES controller port #1)

10.5 SUPPLIED BIOS CAUTIONS

10.5.1

10.5.2

10.5.3

10.5.4

CAUTION #1

MULTI5.X65 reads data under the assumption that MultiPlayer 5 is in the
5P mode with all 4 controllers connected and that a controller is connect-
er to controller port #1 of the Super NES control deck. Therefore, if Multi-
Player 5 is not connected or a device other than a controller is connected,
the contents of con1~5 are invalid. Refer to status obtained by
M_CHECK.X65 and data in sgn1~5 to check the status of device connec-
tions.

CAUTION #2

Since the supplied BIOS uses the automatic read function, the BIOS can
not be called more than once per frame (the period from one automatic
read to the next automatic read). Do not overlap the execution of the
BIOS with the automatic read execution period (about 215 [is from the
start of the NMI). Refer to the chapter “Joy Controller” under “Software” in
this manual.

CAUTION #3

Nintendo does not assume responsibility for any problems which arise
from using all or part of this BIOS. Developers should use the BIOS only
after fully understanding its operations and usage.

CAUTION #4

Change the BIOS end code, at the end of the BIOS, when partial chang-
es are made to the BIOS. This is demonstrated below.

* M_CHECK.X65
“NINTENDO SHVC MULTI5 CONNECT CHECK Ver X.XX"
="“MODIFIED FROM SHVC MULTI5 CONNECT CHECK Ver X.XX”

* MULTI5.X65
“NINTENDO SHVC MULTI5 BIOS Ver X.XX”
= “MODIFIED FROM SHVC MULTI5 BIOS Ver X.XX"

4-10-4

MULTIPLAYER 5 SUPPLIED BIOS

10.5.5 CAUTION #5

When consecutively calling “MULTI5.ASM (X65)” AND “M_CHECK.ASM
(X65)”, the user must call “MULTI5.ASM (X65)” first to ensure the expect-
ed results.

4-10-5

SNES DEVELOPMENT MANUAL

10.6 MULTIPLAYER 5 SUPPLIED BIOS PROGRAM LISTINGS

The following are program listings contained on the MultiPlayer 5 Supplied BIOS
diskette. These programs are in the I.S. assembler format.
[M_CHECK.X65]
ON816
PUBALL
ASSUME 0,0
MEM16 macro
ON16A
endm
MEMS8 macro
OFF16A
endm
IDX16 macro
ON16l
endm
IDX8 macro
OFF16l
endm

Bttt iR s Rttt L s g L T T 2 T T 2 g g g 2 2 2 2 23
1
= 3 e sk 3k ke vk gk ok ok ok ke ok e ok ok Sk ok ke ke e ol o ok ok sk ok ok 9k ok sk ok 3k T ok 3 ok ok ok o vk ok ok ok ke ok ke ok ok ok ok ok o ok ok ok ok ok ok ok e o e ok ke ok e o ke e ke e ok ke ok

; MultiPlayer connection check routine ver x.xx
; Date
; © 199x Nintendo

Bt i d I T R R 2R s
)
ad td i s R L ey R R R AR e 2L L2
’

BANK8O0 GROUP 080H

; MultiPlayer connection check BIOS start code
; Please do not delete this code

DB ‘START OF MULTI5 CONNECT CHECK’

; RAM define table

BANKEQU GROUP 0

EXTERN status
EXTERN regOl,regOh,regil,regih

c_ad1 EQU 4016H
c_ad2 EQU 4017H

4-10-6

MULTIPLAYER 5 SUPPLIED BIOS

BANK80 GROUP 080H

KRR A A A A AT KT A AT E IR EA I AR AR IR AR AA A AR I AR IAR AR AR IR I I hhkhhkh Ak kA ko kA kA kk kR hkkkkkk
H

; MultiPlayer connection check ver x.xx

Bt ad il sttt R Rt ey L T e T

; (Caution)
; Contents of register A, B, X, Y will be destroyed after this routine.
check_mpa
PHP
IDX8
MEMS8
SEP #30H
STZ .status
;<automatic controller read enabled?>
_c00
LDA 4212H
AND #01H
BNE _c00
;<determine if MPA is connected or not?>
STz c_ad1 ;output “0” to out0
LDA #01H
STA c_ad1 ;output “1” to out0
LDX #08H
_c10
LDA c_ad1
LSR A
LSR A
ROL .regOh ;read d1 of 4016h and store it to regOh
LDA c_ad2
LSR A
LSR A
ROL .reglth ;read d1 of 4017h and store it to reg1h
DEX
BNE _c10
STZ c_ad1 ; output 0 to out0
LDX #08H
_c20
LDA c_ad1
LSR A
LSR A
ROL .regOl ;read d1 of 4016h and store it to regOl
LDA c_ad2

4-10-7

SNES DEVELOPMENT MANUAL

LSR A

LSR A

ROL .regil ;read d1 of 4017h and store it to reg1l
DEX

BNE c20

;<determine if special device or MPA is connected?>

;<Check controller port1>

LDA .reg0h
CMP #OFFH ;ls regOh=$FF?
BNE _c30 ; YES->determine if MPA or special device
; NO->branch, check connection on port2
LDA .regol
CMP #OFFH ;ls regOI=$FF?
BEQ —C30 ; YES->special device connected to port1, jmp
; NO->MPA connected to port1, set status
LDA #80H
STA .status

;<Check controller port2>

’
El
’
’
b
1
y

c30

c40

LDA .regth

CMP #OFFH ;ls reg1h=$FF?

BNE _c40 ; YES->determine if MPA or special device
; NO->branch and return from routine

LDA .regil

CMP #OFFH ;ls reg1I=$FF?

BEQ _c40 ; YES->special device connected to port2, rts
; NO->MPA connected to port2, set status

LDA #40H

ORA .status

STA .status

PLP

RTS

MultiPlayer connection check routine version x.xx

(Caution)

When this routine is used as is, please don’t delete this code.

If this routine is modified, please use the following code instead
‘MODIFIED FROM SHVC MULTI5 CONNECT CHECK VER x.xx’

.***

DB ‘NINTENDO SHVC MULTI5 CONNECT CHECK Ver1.00’

4-10-8

MULTIPLAYER 5 SUPPLIED BIOS

o % Y Je de e e v 3k o I e Kk e Ak ok ok o e e ok A s e vk ok vk ok dk e ok vk ok vk d ok sk e sk ok sk ok e e ke Sk ok g ok i ke Sk ok ok o o ke ok ok 9k 9k ok e o ok 3k sk Sk gk o e ok ok ok o o e ok ok ok ok ok e ke ke
’

; MultiPlayer BIOS end code
; Please do not delete this code
e g A Ak A A kA A A A kA A A A AR KA AN AR A AR AR AR AR AR AR R A T AR AT AR TR AR KKkl

' DB ‘END OF MULTI5 CONNECT CHECK’

END

4-10-9

SNES DEVELOPMENT MANUAL

[MULTI5.X65]
ON816
PUBALL
ASSUME 0,0
MEM16 macro
ON16A
endm
MEMS8 macro
OFF16A
endm
IDX16 macro
ONi16l
endm
IDX8 macro
OFF16l
endm

.**
:**
)

)

; MultiPlayer driver routine ver x.xx

; Date
; © 199x Nintendo

.**
y

= e e e e sk e sk ok e ok A e ok ke e A o ok ok ok ok ok ok ok sk e e ok ko ke sk ok ok o ko ke o ok ok ok o T T 3k ok ok e o ok ok ok ok ok e o ke o
L

; (Caution)

; 1. Enable controller automatic read when read_mpa routine is used.
; 2. This BIOS is for the standard controller only.

; 3. This BIOS is called once every frame.

BANKSO GROUP 080H

; MultiPlayer BIOS start code
; Please do not delete this code
DB ‘START OF MULTI5 BIOS’
: RAM define table
BANKEQU GROUP 0
ORG 0010H
status DS 1 ; status of device connection
con5 DS 2 ;status of controller #5 (MPA #4)

4-10-10

MULTIPLAYER 5 SUPPLIED BIOS

con4 DS 2 ;status of controller #4 (MPA #3)

con3 DS 2 ;status of controller #3 (MPA #2)

con2 DS 2 ;status of controller #2 (MPA #1)

cont DS 2 ;status of controller #1 (front connector #1)
sgn5 DS 1 ;signature of controller #5 (MPA #4)

sgn4 DS 1 ;signature of controller #4 (MPA #3)

sgn3 DS 1 ;signature of controller #3 (MPA #2)

sgn2 DS 1 ;signature of controller #2 (MPA #1)

sgn1 DS 1 ;signature of controller #1 (front connector #1)
regOl DS 1 ; Work register

regOh DS 1 ; Work register

regil DS 1 ; Work register

regih DS 1 ; Work register

c_ad1 EQU 4016H

c_ad2 EQU 4017H

BANK80 GROUP 080H

R A2 AR SR R R d T L Ty T L 2 T 3 T 2 T T T g T 2 3

; (Caution)
; Contents of register A, B, X, Y will be destroyed after this routine.
read_mpa
PHP
IDX8
MEMS8
SEP #30H
STz <status
;<automatic read of controller data enable?>
10
LDA 4212H
AND #01H
BNE _10
;<store data of controller #1>
LDA 4219H
STA conl+1
LDA 4218H
STA coni ;store data of controller #1 to con1 (1 byte)
AND #OFH
STA sgn1
LDA c_ad1

4-10-11

SNES DEVELOPMENT MANUAL

LSR A
ROL sgn1 ;store signature of controller #1 to sgn1

;<store data of controller #2 and #3>

LDA 421BH

STA con2+1

LDA 421AH

STA con2 ;store data of controller #2 to con2
AND #OFH

STA sgn2

LDA 421FH

STA con3+1

LDA 421EH

STA con3 ;store data of controller #3 to con3
AND #OFH

STA sgn3

LDA c_ad2

LSR A

ROL sgn2 ;store signature of controller #2 to sgn2
LSR A

ROL sgn3 ;store signature of controller #3 to sgn3

;<output “0” to PP7>

LDA #7FH
STA 4201H
;<read and store data of controller #4 and #5>
LDY #10H
_20
LDA c_ad2
MEM16
REP #20H
LSR A
ROL con4 ;store data of controller #4 to con4
LSR A
ROL con5 ;store data of controller #5 to con5
MEMS8
SEP #20H
DEY
BNE _20
LDA con4
AND #0FH
STA sgn4
LDA cons
AND #0OFH
STA sgn5

4-10-12

MULTIPLAYER 5 SUPPLIED BIOS

P
LDA c_ad2
LSR A
ROL sgn4 ;store signature of controller #4 to sgn4
LSR A
ROL sgn5 ;store signature of controlier #5 to sgn5

;< output “1” to PP7>

LDA #OFFH
STA 4201H
PLP
RTS

(Caution)

When this routine is used as is, please don't delete this code.
; If this routine is modified, please use the following code instead.
; ‘MODIFIED FROM SHVC MULTI5 BIOS Ver x.xx’

, DB ‘NINTENDO SHVC MULTIS5 BIOS Ver x.xx’

)
; MultiPlayer driver routine ver x.xx
;

ARk Ak R R A KRk A KA ARk AR h A A R Rk KK IR AR A AR AR AR KA AR IR A R AR I AT AR A A h kA hhhkkkk A kkkdkk ke kkkkkdkkkk
)

; MultiPlayer BIOS end code
; Please do not delete this code
R A KR AR AR KRR I r A A KR KKK R A KA AL AR AR AR KRR KA AR AA KA K ARARRR A KRR IKRAAKRRAA AR AR Ak ARk hkKk

’ DB ‘END OF MULTI5 BIOS’

END

4-10-13

SNES DEVELOPMENT MANUAL

10.7 MULTIPLAYER DEVELOPMENT ASSEMBLY

Nintendo has created a breadboard for evaluation of MultiPlayer 5 programs. This
breadboard is manufactured according to the standard MultiPlayer 5 circuit speci-
fications and is the standard evaluation tool for MultiPlayer 5 programs. All master
programs should be tested using this device prior to submission for approval.

Nintendo also uses this breadboard to test for proper operation as part of lot
checks.

If the breadboard is desired for program development, contact the NOA Parts De-
partment at (800) 531-4048. Ask for the MultiPlayer Development Assembly.

4-10-14

SUPER NES PARTS

LIST

22945
21712
25306
21713
23089
21715
21716
23090
22424
21943
25100
21326
22423
22939
22940
21940
21941
7879
22536
22537
22538
22539
22540
24468
26424
27441
28761
22427
21945
24470
25474
26011
28626
28760
28625
33366
32321
22410
27124
22742
22743
22744
22745
22746
22748
22749

Chapter 1.
BRET

Super NES Parts List

~ Description

Remarks

“Control Deck (SNS)

Control Deck (SFX)

GPK Super Mario World (SNS)

GPK Super Mario World (SFX)

Cable AV (Stereo) - (ACC)

AC Adapter (SFX)

Cable RGB

Cable S-VHS (ACC)

Cable AV Mono

IC D411 CIC

IC D413 CIC (PAL)

RAM S-WRAM 1M SNS/SHVC Custom
Fuse 1.5A

Housing GPK Front (SNS)

Housing GPK Back (SNS)

Housing GPK Front (SFX)

Housing GPK Back (SFX)

Screw GPK M2x5.9

PCB SHVC-1AON (bare)

PCB SHVC-1A1B (bare)

PCB SHVC-1A3B (bare)

PCB SHVC-1A5B (bare)

PCB SHVC-1BON (bare)

PCB SHVC-1B5B (bare)

PCB SHVC-1K1B (bare) (Super Mario Kart)
PCB SHVC- 4PV5B Evaluation Kit

PCB SHVC- 2P3B Evaluation Kit

PCB Assy SHVC- 2P3B

PCB Assy SHVC- 1PON

PCB Assy SHVC- 2Q5B

PCB Assy SHVC-4PV5B

PCB Assy SHVC-2QW5B

PCB Assy SHVC-8PV5B

PCB Assy SHVC-4QW5B

PCB Assy SHVC-1RA3B6S

PCB Assy SHVC-4PV7B

PCB Assy SHVC-8X7B

Multi Checker SFX

Multi Checker (20/21 Modes)

EPROM 64K MBM27C64 Fujitsu (blank)
EPROM 128K MBM27C 128 Fujitsu (blank)
EPROM 266K MBM27C256 Fujitsu (blank)
EPROM 512K MBM27C512 Fujitsu (blank)
EPROM 1M NH27C101 Hitachi (blank)
EPROM 2M FUJITSU MBM 27C2001 (blank)

EPROM 4M TC574000D Toshiba (blank)

25 PCBs
25 PCBs

FOR PARTS ORDERS CALL: 1-800-531-4048

SNES DEVELOPMENT MANUAL

21283 |

22771
26882
21321
21322
21323
22943
23367
23884
23368
27448
25715
24966
27457

- Description

~ Remarks

Connector Expansion 28 Pin Male (SFX)
Connector Expansion 28 Pin Female
Super NES Emulator-SE

IC RF5A22 CPU SHVC

IC RF5C77 PPU1 SHVC

IC RF5C78 PPU2 SHVC

DSP1

RAM 16K - S, Low Power Small

RAM 64K - S, Low Power Large

RAM 256K - S, Low Power Large
Multiplayer Development Assy

RAM, TC551001PL-85 (Emulator Upgrade)
Super NES Development Manual, Book 1
Super NES Development Manual, Book 2

INDEX

INDEX (Book)

A

Absolute Addressing 1-17-4
Absolute Multiplication 1-15-1
Addition/Subtraction Screen 1-7-1
ADSR Mode 2-7-3

Audio Processing Unit 1-22-1

B

BG Mode 1-3-1, 1-27-3
Bit Rate Reduction 2-2-1
Brightness 1-27-1

BRR 2-2-1,2-7-9

BRR Filter 2-2-1, 2-2-2
BRR Filter Number 2-2-1
BRR Format 2-2-1

BRR Range 2-2-1, 2-2-2

C

CG-RAM 1-8-1, 1-27-11

Channels 1-17-1

Clock Speed 1-21-1

Color Constant 1-7-2

Color Constant Addition/Subtraction 1-7-5,
1-9-1

Color Generator RAM 1-22-2

Colors 1-2-1

Controller 1-13-1, 1-14-1

CPU Clock 1-21-1

D

Data Bank Register 3-3-2, 3-4-5, 3-4-8
Data Transfer 1-17-1

Direct Page Flag 2-8-7

Direct Register 3-4-8

Direct Select 1-27-16

Division 1-15-1

DMA 1-13-1, 1-17-1

DMA, General Purpose 1-13-1, 1-17-1

E

Echo Delay 2-7-9

Echo Enable 2-7-8

Echo Feed-Back 2-7-9

Echo Filter Coefficients 2-7-1
Echo Start Address 2-7-9
Emulation Mode 3-1-1, 3-2-1
Expanded Connector 1-13-1
ExtBG Mode 1-5-1, 1-27-19

External Latch Flag 1-27-22, 4-1-3
External Synchronization 1-27-19

F

Fixed Color Addition 1-6-1
G

Gain Mode 2-7-3

H

H-Blank 1-17-4
H-DMA 1-6-1, 1-12-1, 1-17-1
Horizontal Blanking 1-1-2

I

Indirect Addressing 1-17-4
Interface 1-14-1

Interlace 1-1-1, 1-1-2, 1-18-1
Interrupt 1-16-1

IPL ROM 2-1-1

J
Joy Controller Enable 1-28-1
M

Main Screen 1-7-1, 1-7-5
Mode 20 1-21-3

Mode 21 1-21-4

Mosaic 1-4-1, 1-27-3
Multiplication 1-27-20

(10of7)

INDEX

N

Native Mode 3-2-1
NMI 1-13-1

0]

OAM Priority Rotation 1-27-2
Object Attribute Memory 1-22-2, 1-27-2
Object Size 1-27-1

P
Pallets 1-2-1
Priority 1-2-1

Priority Order 1-20-2

Processor Status Register 3-9-2
Programmable I/O Port 1-14-1, 1-28-1
Program Bank Register 3-3-3, 3-4-7
Program Counter 3-3-3

Program Status Word 2-8-6

R
Resolution 1-3-1, 1-18-1
S

Screen Addition/Subtraction 1-6-1, 1-7-5,
1-9-1

Screen Repetition 1-27-4

Scroll 1-12-1

Scroll, Vertical Partial 1-12-1

Sony SPC700 2-8-1

Stack Pointer 3-3-3

Sub Screen 1-7-1, 1-7-5

Synchronization 1-16-1

T

Timer 1-16-1

Timer Enable 1-28-1
Transparency 1-7-2

Two’s Complement 1-10-1

\Y%
Vertical Blanking 1-1-2
W

Window 1-6-1, 1-12-1, 1-27-12
Window Logic 1-27-13

(20f7)

INDEX

COMMANDS/INSTRUCTIONS

ADC Rn 2-2-6, 2-9-3
ADC #n 2-2-6, 2-9-4
ADD Rn 2-2-6, 2-9-5
ADD #n 2-2-6, 2-9-6
ALTI 2-2-8, 2-9-7
ALT?2 2-2-8,2-9-8
ALT3 2-2-8,2-9-9
AND Rn 2-2-7, 2-9-10
AND #n 2-2-7,2-9-11
ASR 2-2-7,2-9-12
ATTITUDE 3-5-22
BCC e 2-2-7,2-9-14
BCS e 2-2-7, 2-9-16
BEQe 2-2-7, 2-9-18
BGE e 2-2-7, 2-9-20
BIC Rn 2-2-7, 2-9-22
BIC #n 2-2-7, 2-9-23
BLT e 2-2-7, 2-9-24
BMI e 2-2-7, 2-9-26
BNE e 2-2-7, 2-9-28
BPL e 2-2-7, 2-9-30
BRA e 2-2-7,2-9-32
BVC e 2-2-7, 2-9-34
BVS e 2-2-7, 2-9-36
CACHE 2-2-8, 2-9-38
CMODE 2-2-7, 2-9-39
CMP Rn 2-2-6, 2-9-41
COLOR 2-2-7, 2-9-42
DEC Rn 2-2-6, 2-9-43
DISTANCE 3-5-7
DIV2 2-2-6, 2-9-44
FMULT 2-2-6, 2-9-46
FROM Rn 2-2-8, 2-9-48
GETB 2-2-6, 2-9-49
GETBH 2-2-6, 2-9-51
GETBL 2-2-6, 2-9-53
GETBS 2-2-6, 2-9-55
GETC 2-2-6, 2-9-57
GYRATE 3-5-31

HIB 2-2-7, 2-9-58
IBT Rn, #pp 2-2-6, 2-9-60
INC Rn 2-2-6, 2-9-61
INVERSE 3-5-2

INDEX (Book 1)

TWT Rn, #xx 2-2-6, 2-9-62
JMP Rn 2-2-7, 2-9-63

LDB (Rn) 2-2-6, 2-9-64

LDW (Rn) 2-2-6, 2-9-66

LEA Rn, xx 2-2-8, 2-9-67
LINK #n 2-2-7, 2-9-68

LIMP Rn 2-2-7, 2-9-69

LM R, (xx) 2-2-6, 2-9-70
LMS Ru, (yy) 2-2-6, 2-9-71
LMULT 2-2-6, 2-9-73

LOB 2-2-7, 2-9-75

LOOP 2-2-7, 2-9-77

LSR 2-2-7, 2-9-78

MERGE 2-2-7, 2-9-79

MOVE Rn, Rn’ 2-2-8, 2-9-81
MOVE Rn, #xx 2-2-8, 2-9-82
MOVE Rn, (xx) 2-2-8, 2-9-83
MOVE (xx), Rn 2-2-8, 2-9-85
MOVEB Rn, (Rn’) 2-2-8, 2-9-87
MOVEB (Rn’), Rn 2-2-8, 2-9-88
MOVES Rn, Rn’ 2-2-8, 2-9-89
MOVEW Rn,(Rn’) 2-2-8, 2-9-90
MOVEW (Rn’), Rn 2-2-8, 2-9-91
MULT Rn 2-2-6, 2-9-93
MULT #n 2-2-6, 2-9-94
MULTIPLY 3-5-1

NOP 2-2-8, 2-9-95

NOT 2-2-7, 2-9-96
OBJECTIVE 3-5-25

OR Rn 2-2-7, 2-9-97

OR #n 2-2-7, 2-9-99
PARAMETER 3-5-12

PLOT 2-2-7, 2-9-100

POLAR 3-5-9

PROJECT 3-5-18

RADIUS 3-5-4

RAMB 2-2-7, 2-9-101
RANGE 3-5-6

RASTER 3-5-15

ROL 2-2-7, 2-9-102

ROMB 2-2-7, 2-9-104

(Bof7)

ROR 2-2-7,2-9-105
ROTATE 3-5-8

RPIX 2-2-7, 2-9-107

SBC Rn 2-2-6, 2-9-108
SBK 2-2-6, 2-9-109
SCALAR 3-5-29

SEX 2-2-7,2-9-110

SM (xx), Rn 2-2-6, 2-9-112
SMS (yy), Rn 2-2-6, 2-9-113
STB(Rn) 2-2-6, 2-9-115
STOP 2-2-8, 2-9-116

STW (Rn) 2-2-6, 2-9-117
SUB Rn 2-2-6,2-9-118
SUB #n 2-2-6, 2-9-119
SUBJECTIVE 3-5-27
SWAP 2-2-7, 2-9-120
TARGET 3-5-20

TO Rn 2-2-8, 2-9-121
Triangle 3-5-3

UMULT Rn 2-2-6, 2-9-122
UMULT #n 2-2-6, 2-9-123
WITH Rn 2-2-8, 2-9-124
XOR Rn 2-2-7, 2-9-125
XOR #n 2-2-7, 2-9-126

Index (Continued)

COMMANDS/INSTRUCTIONS (Continued)

SUBJECT - Alphebetical Listing
A

Accelerator Mode 1-5-6

Access Modes 2-4-8, 2-5-2, 2-5-4, 2-6-1

ADC #n 2-2-6, 2-9-4

ADC Rn 2-2-6, 2-9-3

ADD #n 2-2-6, 2-9-6

ADD Rn 2-2-6, 2-9-5

ALTI1 2-2-8, 2-9-7

ALT?2 2-2-8, 2-9-8

ALT3 2-2-8, 2-9-9

AND #n 2-2-7, 2-9-11

AND Rn 2-2-7, 2-9-10

ASR 2-2-7,2-9-12

Attitude 2-5-10, 2-5-22, 2-5-24, 2-5-25,
2-5-27, 2-5-28, 2-5-29, 2-5-31,
2-5-32,2-5-33

Auto-increment Mode 1-8-3

B

Barrel Shift 1-8-4, 1-8-5
BCCe 2-2-7,2-9-14
BCS e 2-2-7,2-9-16
BEQ e 2-2-7,2-9-18
BGE e 2-2-7, 2-9-20
BIC #n 2-2-7, 2-9-23
BIC Rn 2-2-7, 2-9-22
Bitmap 1-8-14
Bitmap Access 1-6-3
Bitmap Emulation 1-8-1
Bitmap Format 1-6-1
BLT e 2-2-7,2-9-24
BMl e 2-2-7, 2-9-26
BNE e 2-2-7, 2-9-28
BPL e 2-2-7, 2-9-30
BRA ¢ 2-2-7,2-9-32
Bulk Processing 2-7-4
BVCe 2-2-7,2-9-34
BVS e 2-2-7,2-9-36
BW-RAM 1-1-1, 1-1-2, 1-1-3, 1-1-4, 1-2-2,
1-2-4, 1-6-6

(40f7)

INDEX

Index (Continued)

C

Cache 2-6-1, 2-8-4, 2-8-5, 2-8-6, 2-8-7, 2-9-38

Cache RAM 2-6-1, 2-6-2, 2-8-8

Character Conversion 1 1-6-1, 1-6-7, 1-6-8

Character Conversion 2 1-6-2, 1-6-10, 1-6-11

CMOPDE 2-8-1, 2-8-9, 2-8-11, 2-8-12, 2-9-39

CMP Rn 2-9-41

Color 2-8-1, 2-8-4, 2-8-6, 2-8-10, 2-8-11,

2-8-12, 2-8-13, 2-9-41, 2-9-42

COLR 2-2-3, 2-2-5, 2-4-9, 2-8-4, 2-8-10,
2-8-11, 2-8-12, 2-8-13

Cumulative Arithmetic 1-1-2

Cumulative Sum 1-7-1, 1-7-3

D

DEC Rn 2-2-6, 2-9-43

Distance 3-5-4, 3-5-7

Dither 2-4-9, 2-8-9, 2-8-10, 2-8-11
DIV2 2-2-6, 2-9-44

Division 1-7-1, 1-7-2

DMA 1-9-1

E

External Latch 4-1-4
External Latch Flag 4-1-3

F

Fixed Mode 1-8-2

FMULT 2-2-6, 2-4-1, 2-8-16, 2-8-17, 2-9-46

FROM 2-6-4, 2-6-6, 2-6-7, 2-6-11, 2-7-1,
2-7-2,2-7-3, 2-7-4, 2-8-10, 2-8-11

FROM Rn 2-2-8, 2-9-48

G

GETB 2-2-6, 2-9-49

GETBH 2-2-6, 2-9-51

GETBL 2-2-6, 2-9-53

GETBS 2-2-6, 2-9-55

GETC 2-2-6, 2-8-1, 2-8-4, 2-8-9, 2-8-12,
2-8-13,2-9-57

Gyrate 3-5-31

H

H Counter 4-1-4

HIB 2-2-7, 2-9-58

Horizontal Counter Latch 4-1-3
HV Timer 1-1-2, 1-10-1

I

IBT Rn, #pp 2-2-6, 2-9-60

INC Rn 2-2-6, 2-9-61

Inverse 3-5-2

I-RAM 1-1-1, 1-1-3, 1-1-4, 1-2-2, 1-2-5, 1-3-5
IWT Rn, #xx 2-2-6, 2-9-62

J
JMP Rn 2-2-7, 2-4-3, 2-9-63
L

LDB (Rn) 2-2-7, 2-9-64
LDW (Rn) 2-2-7, 2-9-66
LEA Rn, xx 2-2-8, 2-9-67
Linear Timer 1-10-1

LINK #n 2-2-7, 2-9-68
LIMP Rn 2-2-7, 2-9-69
LM Rn, (xx) 2-2-7, 2-9-70
LMS Rn, (yy) 2-2-7, 2-9-71
LMULT 2-2-6, 2-4-1, 2-8-16, 2-8-17, 2-9-73
LOB 2-2-7, 2-9-75

LOOP 2-2-7, 2-9-77

LSR 2-2-7,2-9-78

(Sof7)

INDEX

Index (Continued)

M

Masked Interrupt 1-5-3

MERGE 2-2-7, 2-9-79

Message 1-5-3

Mixed Processing Mode 1-5-8
MOVE (xx), Rn 2-2-8, 2-9-85
MOVE R, #xx 2-2-8, 2-9-82
MOVE Rn, (xx) 2-2-8, 2-9-83
MOVE Rn, Rn’ 2-2-6, 2-9-81
MOVEB (Rn’), Rn 2-2-8, 2-9-88
MOVEB R, (Rn’) 2-2-8, 2-9-87
MOVES Rn, Rn’ 2-2-6, 2-9-89
MOVEW (Rn’), Rn 2-2-8, 2-9-91
MOVEW Rn,(Rn’) 2-2-8, 2-9-90
MULT #n 2-2-6, 2-8-16, 2-9-94
MULT Rn 2-2-6, 2-8-16, 2-9-93
Multiplication 1-7-1, 1-7-2
Multiply 3-5-1

N

NOP 2-2-8, 2-6-2, 2-6-3, 2-6-4, 2-6-5, 2-6-7,
2-6-9, 2-8-10, 2-9-95

Normal Color 2-8-11

Normal DMA 1-9-2

NOT 2-2-8, 2-9-96

o

Objective 3-5-22, 3-5-25, 3-5-26
OBJ Rotation 2-8-11

OBJ Scaling 2-8-11

OR #n 2-2-7, 2-9-99

OR Rn 2-2-7,2-9-97

P

Parallel Processing Mode 1-5-7
Parameter 3-3-1, 3-5-1
Pipeline Processing 2-6-1, 2-6-3, 2-6-5
Pixel Cache 2-8-4, 2-8-5, 2-8-6, 2-8-7, 2-8-9
Plot 2-2-7,2-4-1, 2-4-8, 2-4-9, 2-8-1,2-8-4,2-
8-5,2-8-6,2-8-7,2-8-8, 2-8-9, 2-8-10, 2-
8-11, 2-8-13, 2-9-100
Polar 3-5-9
Project 3-5-10, 3-5-12, 3-5-13, 3-5-14,
3-5-15, 3-5-17, 3-5-18, 3-5-19,
3-5-20, 3-5-28

R

Radius 3-5-3, 3-5-4, 3-5-6, 3-5-7, 3-5-30
RAMB 2-2-7, 2-4-6, 2-7-3, 2-9-101

RAN 2-4-8, 2-5-2, 2-5-4, 2-6-1

Range 3-5-6, 3-5-30

Raster 3-2-1, 3-5-12, 3-5-13, 3-5-15, 3-5-16
Register Prefix 2-6-6

ROL 2-2-7, 2-9-102

ROMB 2-2-7, 2-4-5, 2-7-1, 2-9-104

RON 2-4-8, 2-5-2, 2-5-4, 2-6-1

ROR 2-2-7, 2-9-105

Rotate 3-5-8, 3-5-23

RPIX 2-2-7, 2-8-6, 2-8-9, 2-8-12, 2-9-107

(60f7)

Index (Continued)

S X

SBC Rn 2-2-6, 2-9-108 XOR #n 2-2-7,2-9-126
SBK 2-2-6, 2-9-109 XOR Rn 2-2-7, 2-9-125
SBK Instruction 2-7-2, 2-7-4, 2-7-5

Scalar 3-5-29

SCR 2-8-14

SEX 2-2-7,2-9-110

Shared Memory 1-5-4

SM (xx), Rn 2-2-6, 2-9-112
SMS (yy), Rn 2-2-6, 2-9-113
Sprite Rotation 2-8-11

Sprite Scaling 2-8-11

STB(Rn) 2-2-6, 2-9-115

STOP 2-2-8,2-9-116

STW (Rn) 2-2-6, 2-9-117

SUB #n 2-2-6, 2-9-119

SUB Rn 2-2-6, 2-9-118
Subjective 3-5-22, 3-5-27
Super MMC 1-1-1, 1-3-3, 1-3-4
SWAP 2-2-7, 2-9-120

T

Target 3-5-17, 3-5-20, 3-5-21
TO 2-6-2, 2-6-4, 2-6-6, 2-6-7
TO Rn 2-2-8, 2-9-121
Transparent 2-8-9, 2-8-10, 2-8-11, 2-8-13
Triangle 3-5-3

U

UMULT #n 2-2-6, 2-8-16, 2-9-123
UMULT Rn 2-2-6, 2-8-16, 2-9-122

Vv

V Counter 4-1-4

Variable-length Data 1-8-1, 1-8-4
Vector Switching 1-5-4

Vertical Counter Latch 4-1-3
Virtual VRAM 1-1-2

w

WITH 2-6-4, 2-6-6, 2-6-7
WITH Rn 2-2-8, 2-9-124

(7of7)

	Front Cover
	Table of Contents - Book II
	Section 1 - Super Accelerator (SA-1)
	Section 2 - Super FX
	Section 3 - DSP/DSP1
	Section 4 - Accessories
	Supplemental Information
	Index
	Bulletins

	List of Figures - Book II
	List of Tables - Book II
	Section 1 - Super Accelerator (SA-1)
	Chapter 1. Super Accelerator System Functions
	1.1 SA-1 Features
	1.1.1 CPU Core
	1.1.2 CPU Speed
	1.1.3 Internal RAM
	1.1.4 Common Memory Mapping
	1.1.5 Large-Capacity Memory
	1.1.6 Arithmetic Hardware
	1.1.7 Bit-Map Data Operations
	1.1.8 Variable-Length Bit Data Operations
	1.1.9 Custom DMA Circuit
	1.1.10 Timer Function
	1.1.11 Increased Level of Security

	1.2 System Configuration
	Figure 1-1-1 Super Accelerator System Configuration

	1.3 Bus Image Diagram
	Figure 1-1-2 SAS Bus Image

	Chapter 2. Configuration of SA-1
	2.1 SA-1 Functional Description
	Figure 1-2-1 SA-1 Block Diagram
	2.1.1 SA-1 CPU
	2.1.2 I-RAM
	2.1.3 Super MMC
	2.1.4 Internal Controller
	2.1.5 Arithmetic Circuit
	2.1.6 Character Conversion Circuit
	2.1.7 Variable-Length Bit Processing Circuit
	2.1.8 Timer Circuit
	2.1.9 DMA Circuit

	2.2 Memory Access
	2.2.1 Game Pak ROM Access
	2.2.1.1 Only SA-1 CPU Uses ROM
	2.2.1.2 Super NES CPU Accesses During SA-1 CPU Operations
	2.2.1.3 Both Processes Access ROM (2-Phase Access)

	2.2.2 BW-RAM Access
	2.2.2.1 Only SA-1 CPU Uses BW-RAM
	2.2.2.2 Super NES CPU Accesses BW-RAM During SA-1 CPU Operations
	2.2.2.3 Both Processors Access BW-RAM (2-Phase Access)

	2.2.3 SA-1 I-RAM Access
	2.2.3.1 Only the SA-1 CPU Accesses I-RAM
	2.2.3.2 Both SA-1 CPU and Super NES CPU Access I-RAM

	Chapter 3. Super Accelerator Memory Map
	3.1 Memory Map from Super NES CPU Perspective
	3.2 Memory Map from SA-1 CPU Perspective
	3.3 Super MMC
	3.3.1 ROM Bank Switching
	3.3.2 ROM Image Projection
	3.3.3 Backup RAM
	3.3.4 Protection of Backup Data
	3.3.5 Control Registers
	3.3.6 Cautions
	3.3.6.1 High Speed Modes
	3.3.6.2 ROM and Backup RAM Area
	3.3.6.3 Shared ROM Memory Map
	3.3.6.4 Backup RAM Protection
	3.3.6.5 SA-1 I-RAM Pre-Assigned

	3.4 Vectors and ROM-Registered Data

	Chapter 4. SA-1 Internal Register Configuration
	4.1 Explanation of Registers
	4.1.1 SA-1 CPU Control (CCNT)
	4.1.2 Super NES CPU Int Enable (SIE)
	4.1.3 Super NES CPU Int Clear (SIC)
	4.1.4 SA-1 CPU Reset Vector (CRV)
	4.1.5 SA-1 CPU NMI Vector (CNV)
	4.1.6 SA-1 CPU IRQ Vector (CIV)
	4.1.7 Super NES CPU Control (SCNT)
	4.1.8 SA-1 CPU Int Enable (CIE)
	4.1.9 SA-1 CPU Int Clear (CIC)
	4.1.10 Super NES CPU NMI Vector (SNV)
	4.1.11 Super NES CPU IRQ Vector (SIV)
	4.1.12 H/V Timer Control (TMC)
	4.1.13 SA-1 CPU Timer Restart (CTR)
	4.1.14 Set H-Count (HCNT)
	4.1.15 Set V-Count (VCNT)
	4.1.16 Set Super MMC Bank C (CXB)
	4.1.17 Set Super MMC Bank D (DXB)
	4.1.18 Set Super MMC Bank E (EXB)
	4.1.19 Set Super MMC Bank F (FXB)
	4.1.20 Super NES CPU BW-RAM Address Mapping (BMAPS)
	4.1.21 SA-1 CPU BW-RAM Address Mapping (BMAP)
	4.1.22 Super NES CPU BW-RAM Write Enable (SBWE)
	4.1.23 SA-1 CPU BW-RAM Write Enable (CBWE)
	4.1.24 BW-RAM Write-Protected Area (BWPA)
	4.1.25 SA-1 I-RAM Write Protection (SIWP)
	4.1.26 SA-1 I-RAM Write Protection (CIWP)
	4.1.27 DMA Control (DCNT)
	4.1.28 Character Conversion DMA Parameters (CDMA)
	4.1.29 DMA Source Device Start Address (SDA)
	4.1.30 DMA Destination Start Address (DDA)
	4.1.31 DMA Terminal Counter (DTC)
	4.1.32 BW-RAM Bit Map Format (BBF)
	4.1.33 Bit Map Register File (BRF)
	Figure 1-4-4 Bitmap Register Files 0 - 7
	Figure 1-4-5 Bitmap Register Files 8 - F

	4.1.34 Arithmetic Control (MCNT)
	4.1.35 Arithmetic Parameters: Multiplicand / Dividend (MA)
	4.1.36 Arithmetic Parameters: Multiplier / Divisor (MB)
	4.1.37 Variable-Length Bit Processing (VBD)
	4.1.38 Variable-Length Bit Game Pak ROM Start Address (VDA)
	4.1.39 Super NES CPU Flag Read (SFR)
	4.1.40 SA-1 CPU Flag Read (CFR)
	4.1.41 H-Count Read (HCR)
	4.1.42 V-Count Read (VCR)
	4.1.43 Arithmetic Result (Product / Quotient / Accumulative Sum) (MR)
	4.1.44 Arithmetic Overflow Flag (OF)
	4.1.45 Variable-Length Data Read Port (VDP)
	4.1.45 Version Code Register (VC)

	Chapter 5. Multi-Processor Processing
	5.1 Multi-Processor System
	5.2 Starting and Stopping the SA-1 CPU
	5.2.1 Starting the SA-1 CPU
	5.2.2 Stopping the SA-1 CPU

	5.3 MPU Handshakes
	5.3.1 Interrupts
	Table 1-5-1 Types of Interrupts
	Table 1-5-2 Interrupt Identification and Clear
	Table 1-5-3 Interrupt Mask

	5.3.2 Message
	Table 1-5-4 Sending and Receiving a Message

	5.4 Shared Memory
	5.5 Vector Switching
	Table 1-5-5 Situation Dependant Vectors

	5.6 SA-1 CPU Core
	5.6.1 Vectors
	5.6.2 SA-1 CPU Wait

	5.7 Operation Modes
	5.7.1 Accelerator Mode
	Figure 1-5-1 Accelerator Mode

	5.7.2 Parallel Processing Mode
	Figure 1-5-2 Parallel Processing Mode

	5.7.3 Mixed Processing Mode
	Figure 1-5-3 Mixed Processing Mode

	5.8 Operating Modes and Processing Speeds
	Table 1-5-6 Opeerating Modes and Processing Speeds

	Chapter 6. Character Conversion
	6.1 Introduction to Character Conversion
	6.1.1 Bitmap Format

	6.2 Character Conversion Functions
	6.2.1 Character Conversion 1
	Figure 1-6-1 Character Conversion 1

	6.2.2 Character Conversion 2
	Figure 1-6-2 Character Conversion 2

	6.3 Bitmap Access
	Figure 1-6-3 Compressed Bitmap Data
	6.3.1 BW-RAM Image Projection
	Figure 1-6-4 Bitmap Image Projection

	6.3.2 BW-RAM Data Expansion
	Figure 1-6-5 Bitmap Data Expansion
	Figure 1-6-6 Memory Addresses for the Bitmap Area
	Table 1-6-1 Horizontal Size of VRAM (CDMA Register)

	6.4 Character Conversion 1, Detailed Description
	Figure 1-6-7 Character Conversion Buffers

	6.5 Character Conversion 1 Programming Procedure
	Table 1-6-2 Number of Zero Bits in BW-RAM

	6.6 Character Conversion 2, Detailed Description
	Table 1-6-3 Character Conversion and Data Format

	6.7 Character Conversion 2 Programming Procedure

	Chapter 7. Arithmetic Function
	7.1 Types of Arithmetic Operations
	Table 1-7-1 Arithmetic Operations Settings and Cycles

	7.2 Multiplication
	7.3 Division
	7.4 Cumulative Sum

	Chapter 8. Variable-Length Bit Processing
	8.1 Reading Variable-Length Data
	8.2 Fixed Mode
	Figure 1-8-1 Fixed Mode Process Flow Diagram

	8.3 Auto-Increment Mode
	Figure 1-8-2 Auto-Increment Mode Process Flow Diagram

	8.4 Variable-Length Data Processing Settings
	Table 1-8-1 Amount of Barrel Shift
	Figure 1-8-3 Barrel Shift Process

	Chapter 9. DMA
	9.1 Types of DMA
	Figure 1-9-1 Normal DMA
	Figure 1-9-2 Character Conversion DMA

	9.2 Normal DMA Operation
	Table 1-9-1 Source Device Settings
	Table 1-9-2 Destination Device Settings

	9.3 DMA Transmission Speed
	Table 1-9-3 DMA Transmission Speed

	Section 2 - Super FX
	Chapter 1. Introduction to Super FX
	1.1 Features
	1.1.1 RISC-Like Instructions
	1.1.2 High Speed Clock Operation
	1.1.3 Built-In Instruction Cache
	1.1.4 Super NES CPU's Memory May Be Used
	1.1.5 Independent ROM and RAM Buses
	1.1.6 Parallel Operations with Super NES CPU
	1.1.7 Graphics Function
	1.1.8 Pipeline Processing

	1.2 Special Conventions
	1.3 System Configuration
	Figure 2-1-1 Super FX System Configuration

	1.4 System Operation
	Figure 2-1-2 Game Pak ROM / RAM Bus Diagram

	1.5 Example of Usage
	1.5.1 Reset Super NES
	1.5.2 WRAM
	1.5.3 Activation of GSU
	1.5.4 GSU Stop Command
	1.5.5 GSU Disconnect
	1.5.6 Example Summary
	1.5.7 Current Consumption

	Chapter 2. GSU Function Operation
	2.1 GSU Functional Block Diagram
	Figure 2-2-1 GSU Functional Block Diagram
	2.1.1 Super NES CPU Interface
	2.1.2 Instruction Controller
	2.1.3 Game Pak ROM Controller
	2.1.4 Game Pak RAM Controller
	2.1.5 General Registers
	2.1.6 Operator

	2.2 Registers
	Table 2-2-1 Registers Listed by Functional Group
	2.2.1 General Registers
	2.2.1.1 R0 - R13
	2.2.1.2 R14
	2.2.1.3 R15
	2.2.1.4 Status / Flag Register (SFR)

	2.2.2 Registers Related to Memory Operations
	2.2.2.1 Program Bank Register (PBR)
	2.2.2.2 Game Pak ROM Bank Register (ROMBR)
	2.2.2.3 Game Pak RAM Bank Register (RAMBR)
	2.2.2.4 Cache Base Register (CBR)

	2.2.3 Plot Related Registers
	2.2.3.1 Screen Base Register (SCBR)
	2.2.3.2 Screen Mode Register (SCMR)
	2.2.3.3 Color Register (COLR)
	2.2.3.4 Plot Option Register (POR)

	2.2.4 Other Registers
	2.2.4.1 B-RAM Register (BRAMR)
	2.2.4.2 Version Code Register (VCR)
	2.2.4.3 Config Register (CFGR)
	2.2.4.4 Clock Select Register (CLSR)

	2.3 Instruction Set
	Table 2-2-2 Instruction Set

	Chapter 3. Memory Mapping
	3.1 Super NES CPU Memory Map
	3.1.1 GSU Interface
	3.1.2 Game Pak ROM
	3.1.3 Game Pak RAM
	3.1.4 Back-Up RAM
	3.1.5 Super NES CPU ROM
	Figure 2-3-1 Super NES CPU Memory Map

	3.2 GSU Memory Mapping
	3.2.1 Game Pak ROM
	3.2.2 Game Pak RAM
	Figure 2-3-2 Super FX Memory Map

	Chapter 4. GSU Internal Register Configuration
	4.1 General Registers (R0 - R13)
	Table 2-4-1 GSU General Registers
	Figure 2-4-1 Example of General Register

	4.2 Game Pak ROM Address Pointer (R14)
	4.3 Program Counter (R15)
	4.4 Status / Flag Register (SFR)
	Table 2-4-2 GSU Status Register Flags

	4.5 Program Bank Register (PBR)
	4.6 Game Pak ROM Bank Register (ROMBR)
	4.7 Game Pak RAM Bank Register (RAMBR)
	4.8 Cache Base Register (CBR)
	4.9 Screen Base Register (SCBR)
	4.10 Screen Mode Register (SCMR)
	4.10.1 Screen Height
	Table 2-4-3 Screen Height

	4.10.2 Color Gradient
	Table 2-4-4 Color Gradient

	4.10.3 ROM / RAM Enable Flags

	4.11 Color Register (COLR)
	4.12 Plot Option Register (POR)
	4.13 Back-Up RAM Register (BRAMR)
	4.14 Version Code Register (VCR)
	4.15 Config Register (CFGR)
	4.16 Clock Select Register (CLSR)

	Chapter 5. GSU Program Execution
	5.1 Starting the GSU
	5.1.1 Starting GSU Program in Game Pak ROM
	5.1.1.1 Bus Control
	5.1.1.2 Register Addressing

	5.1.2 Starting GSU Program in Game Pak RAM
	5.1.2.1 Transfer GSU Program
	5.1.2.2 Register Addressing

	5.1.3 Starting GSU Program in Cache RAM
	5.1.3.1 Transfer GSU Program
	5.1.3.2 Register Addressing

	5.2 Stopping the GSU
	5.2.1 GSU Auto-Stop Using STOP Instruction
	5.2.2 Forced Stop from Super NES CPU Using GO Flag

	5.3 Memory Access from Super NES CPU During GSU Operation
	5.4 Interrupts
	5.4.1 Super NES CPU Interrupt Vector
	Table 2-5-1 Dummy Interrupt Vector Addresses
	Table 2-5-2 Dummy Data

	5.4.2 Interrupt from GSU to Super NES CPU

	Chapter 6. Instruction Execution
	6.1 Reading Instruction Code
	6.1.1 Execution in Game Pak ROM / RAM
	6.1.2 Execution in Cache RAM

	6.2 Pipeline Processing
	6.3 Program Counter
	6.4 Flag Prefixes
	6.5 Register Prefixes
	6.6 LOOP
	6.7 Subroutines
	6.8 Cache RAM
	6.8.1 Using CACHE Instructions
	6.8.2 Cache Operation
	Figure 2-6-1 Load to Cache RAM While Branching
	6.8.3 Cache RAM Access from the Super NES
	6.8.4 GSU Exclusive Operation in Cache RAM

	Chapter 7. Data Access
	7.1 Game Pak ROM Data
	7.1.1 GSU Program Running in Cache RAM or Game Pak RAM
	7.1.2 GSU Program Running in Game Pak ROM

	7.2 Game Pak RAM Data
	7.2.1 GSU Program Running in Cache RAM or Game Pak ROM
	7.2.2 GSU Program Running in Game Pak RAM

	7.3 Bulk Processing

	Chapter 8. GSU Special Functions
	8.1 Bitmap Emulation
	8.1.1 Set Screen Mode
	8.1.1.1 Screen Mode Register (SCMR)
	Figure 2-8-1 128 Dot High BG Character Array
	Figure 2-8-2 160 Dot High BG Character Array
	Figure 2-8-3 192 Dot High BG Character Array
	Figure 2-8-4 OBJ Character Array

	8.1.1.2 Screen Base Register (SCBR)
	8.1.1.3 CMODE Instruction

	8.1.2 Set Color (COLOR, GETC)
	8.1.3 Plot Processing (PLOT)
	8.1.3.1 Plotting to Same Character Block
	8.1.3.2 Plotting to a Different Character Block
	8.1.3.3 RPIX Instruction

	8.1.4 PLOT Function and CMODE
	Table 2-8-1 Functions of CMODE
	8.1.4.1 Bit 0
	8.1.4.2 Bit 1
	8.1.4.3 Bit 2
	8.1.4.4 Bit 3
	8.1.4.5 Bit 4
	Figure 2-8-5 Plot Operations Assigend by CMODE

	8.1.5 Plot Data Address Calculation Methods

	8.2 Multiplication Instructions
	8.2.1 Internal Processing of FMULT and LMULT

	Chapter 9. Description of Instructions
	9.1 Operand Descriptions
	9.2 Flag Descriptions
	9.3 Operator Functions
	9.4 ADC Rn
	9.5 ADC #n
	9.6 ADD Rn
	9.7 ADD #n
	9.8 ALT1
	9.9 ALT2
	9.10 ALT3
	9.11 AND Rn
	9.12 AND #n
	9.13 ASR
	9.14 BCC e
	9.15 BCS e
	9.16 BEQ e
	9.17 BGE e
	9.18 BIC Rn
	9.19 BIC #n
	9.20 BLT e
	9.21 BMI e
	9.22 BNE e
	9.23 BPL e
	9.24 BRA e
	9.25 BVC e
	9.26 BVS e
	9.27 CACHE
	9.28 CMODE
	9.29 CMP Rn
	9.30 COLOR
	9.31 DEC Rn
	9.32 DIV2
	9.33 FMULT
	9.34 FROM Rn
	9.35 GETB
	9.36 GETBH
	9.37 GETBL
	9.38 GETBS
	9.39 GETC
	9.40 HIB
	9.41 IBT Rn, #pp
	9.42 INC Rn
	9.43 IWT Rn, #xx
	9.44 JMP Rn
	9.45 LDB (Rm)
	9.46 LDW (Rm)
	9.47 LEA Rn, xx
	9.48 LINK #n
	9.49 LJMP Rn
	9.50 LM Rn, (xx)
	9.51 LMS Rn, (yy)
	9.52 LMULT
	9.53 LOB
	9.54 LOOP
	9.55 LSR
	9.56 MERGE
	9.57 MOVE Rn, Rn'
	9.58 MOVE Rn, #xx
	9.59 MOVE Rn, (xx)
	9.60 MOVE (xx), Rn
	9.61 MOVEB Rn, (Rn')
	9.62 MOVEB (Rn'), Rn
	9.63 MOVES Rn, Rn'
	9.64 MOVEW Rn, (Rn')
	9.65 MOVEW (Rn'), Rn
	9.66 MULT Rn
	9.67 MULT #n
	9.68 NOP
	9.69 NOT
	9.70 OR Rn
	9.71 OR #n
	9.72 PLOT
	9.73 RAMB
	9.74 ROL
	9.75 ROMB
	9.76 ROR
	9.77 RPIX
	9.78 SBC Rn
	9.79 SBK
	9.80 SEX
	9.81 SM (xx), Rn
	9.82 SMS (yy), Rn
	9.83 STB (Rm)
	9.84 STOP
	9.85 STW (Rm)
	9.86 SUB Rn
	9.87 SUB #n
	9.88 SWAP
	9.89 TO Rn
	9.90 UMULT Rn

	Section 3 - DSP/DSP1
	Chapter 1. Introduction to DSP1
	1.1 Super NES CPU Support
	1.2 Pseudo 3-Dimensional Graphics
	1.3 Complex Math Processing
	1.4 System Block Diagram
	Figure 3-1-1 System Block Diagram (DSP1)

	1.5 DSP1 Operation
	1.5.1 Command Execution
	Figure 3-1-2 Super NES CPU and DSP1 Communications
	Figure 3-1-3 DSP1 Command Execution

	1.6 Memory Mapping
	1.6.1 Mode 20 / DSP
	Figure 3-1-4 Mode 20 / DSP Memory Map

	1.6.2 Mode 21 / DSP
	Figure 3-1-5 Mode 21 / DSP Memory Map

	Chapter 2. Command Summary
	Table 3-2-1 DSP1 Command Summary

	Chapter 3. Parameter Data Type
	Table 3-3-1 Parameter Data Type

	Chapter 4. Use of DSP1
	4.1 DSP1 DR Register
	Figure 3-4-1 Super NES / DSP1 Memory Mapping (Mode 21)

	4.2 DSP1 Status Register
	Figure 3-4-2 DSP1 Status Register Configuration

	4.3 RQM
	4.4 DMA Transfer
	4.5 Operation Summary
	Figure 3-4-3 DSP1 Operations Flow Diagram
	Figure 3-4-4 Super NES CPU / DSP1 Operational Timing

	Chapter 5. Description of DSP1 Commands
	5.1 General Calculation
	5.1.1 16-Bit Multiplication (Decimal, Integer)
	Equation 5-1

	5.1.2 Inverse Calculation (Floating Point)
	Equation 5-2

	5.1.3 Trigonometric Calculation
	Equation 5-3
	Figure 3-5-1 Trigonometric Calculation

	5.2 Vector Calculation
	5.2.1 Vector Size
	Equation 5-4
	Figure 3-5-2 Vector Calculation

	5.2.2 Vector Size Comparison
	Equation 5-5
	Figure 3-5-3 Vector Size Comparison

	5.2.3 Vector Absolute Value Calculation
	Equation 5-6
	Figure 3-5-4 Vector Absolute Value Calculation

	5.3 Coordinate Calculation
	5.3.1 Two-Dimensional Coordinate Rotation
	Equation 5-7
	Figure 3-5-5 Two-Dimensional Coordinate Rotation

	5.3.2 Three-Dimensional Coordinate Rotation
	Equation 5-8
	Figure 3-5-6 Examples of Three-Dimensional Rotation

	5.4 Projection Calculation
	5.4.1 Projection Parameter Setting
	Figure 3-5-7 Assignment of Projection Parameter
	Figure 3-5-8 Relationship of Sight and Projected Plane

	5.4.2 Raster Data Calculation
	Figure 3-5-9 Calculation of Raster Data
	Figure 3-5-10 BG Screen and Displayed Area

	5.4.3 Object Projection Calculation
	Figure 3-5-11 Calculation of Projected Position of Object
	Figure 3-5-12 Projection Image of Object

	5.4.4 Coordinate Calculation of a Selected Point on the Screen
	Figure 3-5-13 Calculation of Coordinates for the Indicated Point on the Screen
	Figure 3-5-14 Attack Point and Position Indicated on Screen (Side View)

	5.5 Attitude Control
	5.5.1 Set Attitude
	Equation 5-9
	Figure 3-5-15 Attitude Computation
	Figure 3-5-16 Object Coordinate Rotated on Y Axis
	Figure 3-5-17 Object Coordinate Rotated on X Axis
	Figure 3-5-18 Object Coordinate Rotated on Z Axis

	5.5.2 Convert from Global to Object Coordinates
	Equation 5-10
	Figure 3-5-19 Conversion of Global to Objective Coordinates

	5.5.3 Conversion from Object to Global Coordinates
	Equation 5-11
	Figure 3-5-20 Conversion of Object to Global Coordinates

	5.5.4 Calculation of Inner Product with Forward Attitude and a Vector
	Figure 3-5-21 Calculation of Inner Product with Forward Attitude
	Equation 5-12
	Figure 3-5-22 Position of Aircraft and Vector Code

	5.6 New Angle Calculation
	5.6.1 Three-Dimensional Angle Rotation
	Equation 5-13
	Figure 3-5-23 Calculation of Rotation Angle After Attitude Change

	Chapter 6. Math Functions and Equations
	6.1 Multiply
	6.2 Inverse
	6.3 Triangle
	6.4 Radius
	6.5 Range
	6.6 Distance
	6.7 Gyrate
	6.8 Rotate
	6.9 Polar
	6.10 Attitude
	6.11 Objective
	6.12 Subjective
	6.13 Scalar

	Section 4 - Accessories
	Chapter 1. The Super NES Super Scope System
	1.1 Introduction to the Super NES Super Scope System
	1.1.1 Targeting
	Figure 4-1-1 Signal Flow

	1.1.2 Super NES Super Scope Sight Adjustment
	Figure 4-1-2 Optical Alignment
	Figure 4-1-3 Virtual Screen Alignment

	1.2 Basic Super NES Super Scope Specifications
	1.3 Super NES Program Address
	1.3.1 Register Bit Assignment
	Figure 4-1-4 Address and Bit Assignments
	Table 4-1-1 Signal Bit Definitions

	Chapter 2. Principles of the Super NES Super Scope
	2.1 Principles of the Super NES Super Scope
	Figure 4-2-1 Picture Tube
	Figure 4-2-2 Scanning
	Figure 4-2-3 Area Seen by Super NES Super Scope

	2.2 Super NES Super Scope Programming
	Figure 4-2-4 Vertical Positioning
	Figure 4-2-5 Horizontal Positioning

	2.3 The Super NES Horizontal / Vertical Counter
	Figure 4-2-6 Horizontal / Vertical Counter

	Chapter 3. Super NES Super Scope Functional Operation
	3.1 Super NES Super Scope CPU
	3.1.1 Keys
	3.1.2 Key Priority
	3.1.3 Key Recognition
	3.1.4 Simultaneous Key Input

	3.2 Super NES Super Scope Block Diagram
	Figure 4-3-1 Super NES Super Scope Block Diagram
	3.2.1 Light Receiver / Amplifier
	3.2.2 Super NES Super Scope CPU (SM595)
	3.2.3 Light Output

	3.3 Super NES Super Scope Flow Diagram
	Figure 4-3-2 Super NES Super Scope Flow Diagram

	3.4 Infra-red Data Transmission Format
	3.4.1 Overview
	Figure 4-3-3 Raster Signal

	3.4.2 Description of One Byte
	Figure 4-3-4 Definition of One Byte
	Figure 4-3-5 Output Signal Code

	3.4.3 Communication Codes
	Figure 4-3-6 Definitions of Codes

	3.4.4 Raster Signal Transmission Timing
	Figure 4-3-7 Raster Signal Transmission Timing

	Chapter 4. Super NES Super Scope Receiver Functions
	4.1 Super NES Super Scope Receiver Block Diagram
	Figure 4-4-1 Receiver Block Diagram
	4.1.1 Infra-red Light Receiver / Amplifier
	4.1.2 Super NES Super Scope Receiver CPU
	4.1.3 Shift Register
	4.1.4 Operations Flow Diagram
	Figure 4-4-2 Operation Flow Diagram

	4.2 Super NES Super Scope Receiver Interface
	Figure 4-4-3 Receiver Interface Schematic

	4.3 Code Pulse Detection
	4.3.1 One Bit Code Detection
	Figure 4-4-4 One Bit Code Detection

	4.3.2 Raster Pulse Detection

	4.4 Functional Description
	4.4.1 Cursor Mode
	Figure 4-4-5 Cursor Mode Raster Detection Cycle

	4.4.2 Trigger Mode (Single Shot)
	Figure 4-4-6 Trigger Mode, Single Shot

	4.4.3 Trigger Mode (Multiple Shots)
	Figure 4-4-7 Trigger Mode, Multiple Shots

	4.4.4 Noise Flag
	Figure 4-4-8 Noise Flag

	4.4.5 Null Bit
	Figure 4-4-9 Null Bit

	4.4.6 Pause Bit
	Figure 4-4-10 Pause Bit

	4.4.7 Cursor + Trigger Cycle
	4.4.7.1 Trigger (Single Shot)
	Figure 4-4-11 Trigger, Single Shot

	4.4.7.2 Trigger (Multiple Shots)
	Figure 4-4-12 Trigger, Multiple Shots

	Chapter 5. Graphics
	5.1 Limitations on Graphics
	5.2 Super NES Super Scope Optical Color Sensitivity Chart
	Figure 4-5-1 Optical Color Sensitivity Chart

	Chapter 6. Super NES Mouse Specifications
	6.1 Introduction to Super NES Mouse
	6.2 Super NES Mouse Data Flow
	Figure 4-6-1 Valid Super NES Mouse Data String
	6.2.1 Data Transmission
	6.2.2 Read Methods
	6.2.2.1 Method 1
	6.2.2.2 Method 2
	Figure 4-6-2 Serial Data Read Timing

	6.3 Speed Switching
	6.3.1 Using Software
	6.3.2 Use of OUT0 and CUP0 Signals
	6.3.3 Cautions

	6.4 Data
	6.4.1 Signature (SD12 - SD15)
	6.4.2 Speed Data (SD10 and SD11)
	6.4.3 Left and Right Actuators (SD8 and SD9)
	6.4.4 X, Y Absolute Displacement (SD16 - SD31)
	Figure 4-6-3 Explanation of Data Strings 2 Bits or Longer

	6.5 Super NES Mouse Specifications
	6.5.1 Electrical Specifications
	6.5.2 Operational and Endurance Specifications
	6.5.3 Dimensions
	Figure 4-6-4 Super NES Mouse Dimensions

	Chapter 7. Using the Standard BIOS
	7.1 The Standard BIOS
	7.2 Mouse Serial Data Read Routine (mouse_read)
	Figure 4-7-1 Standard BIOS, Output Register

	7.3 Super NES Mouse Speed Switching Routine / speed_change
	7.3.1 Caution
	7.3.2 Using the Program

	7.4 Speed Selection and Cursor Movement
	7.4.1 Fast (10B)
	7.4.2 Normal (01B)
	7.4.3 Slow (00B)

	7.5 Registers
	Mouse Driver Routine (Ver 1.00)
	mouse_read
	speed_change

	Chapter 8. Programming Cautions
	8.1 Caution #1
	8.2 Caution #2
	8.3 Caution #3
	8.4 Caution #4
	8.5 Caution #5
	8.6 Caution #6

	Chapter 9. MultiPlayer 5 Specifications
	9.1 Introduction to MultiPlayer 5
	9.2 Hardware Connections
	Figure 4-9-1 MultiPlayer 5 Device Hardware Connections

	9.3 Modes of Operation
	Table 4-9-1 MultiPlayer 5 Switch Function
	9.3.1 Two Player Mode
	9.3.2 Five Player Mode

	9.4 Programming Cautions for Compatible Software
	9.4.1 Caution #1
	9.4.2 Caution #2
	9.4.3 Caution #3
	9.4.4 Caution #4
	9.4.5 Caution #5
	9.4.6 Caution #6
	9.4.7 Caution #7
	9.4.8 Caution #8

	9.5 Reading Data
	9.5.1 Standard Controller Connected (5P Mode)
	9.5.1.1 Read Timing
	Figure 4-9-2 MultiPlayer 5 Read Timing Chart, 5P Mode

	9.5.1.2 Data Format
	Table 4-9-2 MultiPlayer 5 Data Format

	9.5.2 Peripheral Device Connections
	9.5.2.1 Incompatible Devices
	9.5.2.2 Dissimilar Devices
	Figure 4-9-3 Data Read Timing for Dissimilar Devices

	9.6 Identifying Devices Connected to MultiPlayer 5
	9.6.1 Signatures
	9.6.2 MultiPlayer 5 Signature

	9.7 MultiPlayer 5 Schematic Diagram
	9.8 Reading Controller Data
	9.8.1 Controller Data Storage
	9.8.2 Controller I/O Ports
	9.8.2.1 Register <4016H> (D0, D1 Read)
	9.8.2.2 Register <4017H> (D0, D1 Read)
	9.8.2.3 Register <4016H> (D0 Write)
	9.8.2.4 Register <4201H> (D6, D7 Write)
	9.8.2.5 Register <4213H> (D6, D7 Read)
	Figure 4-9-4 Valid Controller Data String

	Chapter 10. MultiPlayer 5 Supplied BIOS
	10.1 File Description
	10.1.1 BIOS Files
	10.1.2 Sample Program Files

	10.2 Sample Program Execution
	10.2.1 Operation Parameters
	10.2.2 Sample Program Utilization
	Figure 4-10-1 Sample Program Display Format

	10.3 Supplied BIOS Execution
	10.4 Supplied BIOS Output Register
	10.5 Supplied BIOS Cautions
	10.5.1 Caution #1
	10.5.2 Caution #2
	10.5.3 Caution #3
	10.5.4 Caution #4
	10.5.5 Caution #5

	10.6 MultiPlayer 5 Supplied BIOS Program Listings
	MultiPlayer connection check routine ver x.xx
	MultiPlayer driver routine ver x.xx

	10.7 MultiPlayer Development Assembly

	Supplemental Information
	Chapter 1. Super NES Parts List

	Index
	Book I
	A - M
	N - W

	Book II
	Commands / Instructions
	A - ROMB
	ROR - XOR

	Subject - Alphabetical Listing
	A - B
	C - L
	M - R
	S - X

